Good news: You are Brilliant, the Earth is Hiring

By: Erin Pickett, M.S. Student, Oregon State University

GEMM lab UPDATE: Amanda Holdman successfully defended her master’s thesis this week!

Amanda wisely planned her defense date for November 7th, 2016, the day before Election Day. As I anxiously watched the New York Times election forecast needle bounce back and forth, from left to right on Election night, I thought to myself, why didn’t I think of that? If you are unfamiliar with what I am talking about, this “forecast needle” was an animated graphic on the NYT website that bounced constantly all night between the two Presidential candidates. It caused a great deal of unease for those of us that found it difficult to look away. The animation sparked some debate online among bloggers and tweeters, my favorite comment being, “it borders on irresponsible data visualization”. I came to the realization pretty quickly on Tuesday night that despite the outcome of the election, I would still need to turn in my thesis the following week.

Personally, I did not feel motivated to get out of bed on Wednesday. I wasn’t feeling inspired, or overcome with positive thoughts about what my day of thesis writing would bring. Thankfully, here at OSU, we graduate students have good leaders to keep us on track. Wednesday afternoon, we received an encouraging email from our Department Head, Dr. Selina Heppell. I took away two important points from this email. The first: stay positive, and remember that we do great work with great people and that our work matters. Secondly, think about the lessons that we have learned from this election. For those of us that were shocked about who our country has chosen as the next President of the United States, one important lesson is that we need to focus more on engaging people who exist outside of the echo chambers of our scientific communities.

The recent election has left many scientists and environmentalists concerned about what the future political climate will bring in terms of research funding, job opportunities, and environmental protection. More so now than ever it is important to remain positive and hopeful, and to reconsider the way we communicate our research and engage outside communities whose views are unlike our own. Both of these tasks are particularly challenging due to the long list of environmental problems we face. As it turns out, having a hopeful outlook is important for tackling seemingly insurmountable conservation issues, and empowering others to want to do the same (Swaisgood & Sheppard 2010, Garnett & Lindenmayer 2011).

The title of this blog comes from an eloquent commencement speech by Paul Hawken about the importance of remaining optimistic when the data tells us otherwise. While the address was given to the University of Portland class of 2009, I think it is worth reading because it is a relevant and moving reminder of why hope is important.

But, before you read that, take a look at what has been done recently to protect biodiversity around the world-

Photo credit: Mark Sullivan NMFS Permit 10137-07/NOAA

President Obama quadrupled the size of a marine national monument in Hawaii. You can read more about the significance of this monument, called Papahānaumokuākea, in a previous blog of mine.

Photo credit: Northeast U.S. canyons expedition science team and NOAA Okeanos Explorer Program (2013)

Soon after announcing the expansion of Papahānaumokuākea, President Obama established the first marine national monument in the Atlantic. You can read more about the aptly named Northeast Canyons and Seamounts Marine National Monument here.

Photo credit:  Ari Friedlaender

And finally, to top it off, an international body comprised of 24 countries, called the Commission for the Conservation of Antarctic Marine Living Resources, recently came to a consensus to designate a vast portion of the Antarctic’s remote Ross Sea as the world’s largest marine reserve.

 

References

  • Garnett, S. T., & Lindenmayer, D. B. (2011). Conservation science must engender hope to succeed. Trends in Ecology & Evolution, 26(2), 59-60.
  • Swaisgood, R. R., & Sheppard, J. K. (2010). The culture of conservation biologists: Show me the hope!. BioScience, 60(8), 626-630.

 

“Evolution”: a board game review

By Florence Sullivan MSc student, Department of Fish and Wildlife.

Another grad student once told me that in order to survive grad school, I would need three things:

(1) an exercise routine, (2) a pet, and (3) a hobby. My Pilates class on Wednesdays is a great mid-week reminder to stretch. I don’t have a pet, so that advice gets fulfilled vicariously through friends. As for my hobby, I think you’ll find that even when scientists take a break from work, we really don’t get that far away from the subject matter…..

Board games have evolved significantly since the early ‘90s when I grew up on such family staples as Monopoly, Risk, Sorry!, Candyland, and Chutes and Ladders, etc. Now, table-top games tend to fall into three loose categories – “Euro-games” that focus on strategy and economic themes as well as keeping all players in the game until the end, “American-style” that tend toward luck and direct player contact so that not everyone plays until the end, and “Party” that are easy to learn and are often played in large groups as social icebreakers or to provide entertainment.

img_20161106_200251024
A few of my favorite games.

As board games proliferate, we see the use of many themes and often, there are valuable educational lessons included in the game design!  There are militaristic or survival games (Betrayal at the House on the Hill, Dead of Winter), economic and engineering (Settlers of Catan, Istanbul, Ticket to ride, Carcassonne), fantasy and art (Small World, Dixit), cooperative vs competitive (Hanabi, Forbidden Desert vs. 7 Wonders), and some of my favorites – the sciences (Compounded, Bioviva, Pandemic).

Today, let’s talk about my current favorite – Evolution. It is immediately obvious that the game designers responsible are either giant nerds (I use this in the most loving way possible) or have spent some quality time with ecologists.  Not only is the art work beautiful, and the game play smooth, but the underlying mechanics allow serious ecological theories such as ‘predator and prey mediated population cycles’, ‘co-evolution’ and ‘evolutionary arms-races’ to be acted out and easily understood.

Players set up their species around the watering hole, and contemplate their next moves.
Players set up their species (1 green/yellow tile = 1 species) around the watering hole, and contemplate their next moves.

In game play, as in life, the point of the game is to eat – victory is achieved by the player who has managed to ‘digest’ the most food tokens. All players begin with a single species, and with each turn, can either add traits (ie. fat tissue, scavenger, etc.) to the species, increase the body size of a species, gain a population level, or gain additional species.  Next, players take food from a limited, random supply until there is no food left. Species that have not been fed to their full capacity (population levels) will starve, and can even become extinct – much like the reality of environmental cycles.  Finally, all food that has been ‘eaten’ is digested, and the next round begins.

Since a player can never be sure how much food will appear on the watering hole each turn, it is a good strategy to capitalize on traits like foraging which allows a species to take twice as much food every time it feeds.  If your species cooperates with another, that means that it gets to eat every time you feed the first species. A player who combines foraging traits with multiple cooperating species in a “cooperation chain” can quickly empty the watering hole before any other players get a chance.  Much like a species perfectly adapted to its niche in the real world will out compete more generalist species.

img_20161106_195009550
The pack-hunting carnivore on the left can easily take down the fertile defensive herding species in the upper right. The efficient foraging species in the middle is protected by its horns, and cooperates with the next species to the right. The burrowing species is protected from carnivores only as long as it is full (and presumably no longer needs to venture out of its burrow).

One way to avoid the competition for food at the watering hole is to play the carnivore trait.  This species must now consume other species in order to feed itself.  A few caveats; a carnivore must be larger in body size than anything it tries to eat, and can no longer eat plant food as it is an obligate carnivore. As soon as a carnivore appears on the board, the evolutionary arms-race begins in earnest!  Traits such as burrowing, climbing, hard shells, horns, defensive herding and warning calls become vital to survival.  But carnivores can be clever, and apply ambush to species with warning call, or pack-hunting to a species with defensive herding.  In everything, there is a certain balance, and quickly, players will find themselves acting out a classic ‘boom and bust population growth cycle’ scenario, where herbivores go extinct due to low food supply at the watering hole and/or high predation pressure, and carnivores soon follow when there are no un-protected species for them to feed upon.

img_20161106_195518519
A flying creature must first pay the ‘upkeep cost’ of its body size in food, before it can feed its population. Good thing it has the extra cliff-side food source that is only accessible to other species with wings!

An expansion has been released for the game – it is called Flight – and introduces traits such as flight, camouflage, good eyesight, and others.  From an ecologist’s perspective, it fits the original game well both scientifically and thematically.  To achieve flight, a higher price must be paid (in terms of cards discarded) to gain the trait card, and unlike other species, an ‘upkeep cost’ must be gathered in food tokens before the species actually eats any food tokens during the round.  However, flight also gives access to a cliff-side watering hole that is not accessible to earthbound species. This neatly mirrors the real world where flight is an energetically costly activity that also opens new niches.

The next expansion is just arriving in stores, and I can’t wait to play it! It’s called Climate, and adds traits such as nocturnal, claws, and insectivore. Perhaps more exciting though, are the ‘event cards’ which will trigger things like desertification, cold snaps, heatwaves, volcanic eruptions and meteor strikes. A climate tracker will keep track of whether the planet is in an ice age or a warming period, and certain traits will make your species more or less likely to survive – can you guess which ones might be useful in either scenario? I think it will be enormously fun to play through different climate scenarios and see how traits stack and species interactions evolve.  Perhaps this new addition to the game will even cause a new game review in Nature – check out their initial assessment here: http://www.nature.com/nature/journal/v528/n7581/full/528192a.html

Games like evolution are useful thought exercises for students and researchers because they promote discussion of adaptive traits, predator-prey cycles, climate, and ecosystem dynamics as related to our own projects. Watching a story unfold in front of you is a great way to truly understand some of the core principles of ecology (and other subjects). This is especially relevant in the GEMM lab where we continuously ask ourselves why our study species act the way they do? How do they find prey, and how are/will they adapt(ing) to our changing climate?

The five senses of fieldwork

By Leila Lemos, PhD student

 

This summer was full of emotions for me: I finally started my first fieldwork season after almost a year of classes and saw my first gray whale (love at first sight!).

During the fieldwork we use a small research vessel (we call it “Red Rocket”) along the Oregon coast to collect data for my PhD project. We are collecting gray whale fecal samples to analyze hormone variations; acoustic data to assess ambient noise changes at different locations and also variations before, during and after events like the “Halibut opener”; GoPro recordings to evaluate prey availability; photographs in order to identify each individual whale and assess body and skin condition; and video recordings through UAS (aka “drone”) flights, so we can measure the whales and classify them as skinny/fat, calf/juvenile/adult and pregnant/non-pregnant.

However, in order to collect all of these data, we need to first find the whales. This is when we use our first sense: vision. We are always looking at the horizon searching for a blow to come up and once we see it, we safely approach the animal and start watching the individual’s behavior and taking photographs.

If the animal is surfacing regularly to allow a successful drone overflight, we stay with the whale and launch the UAS in order to collect photogrammetry and behavior data.

Each team member performs different functions on the boat, as seen in the figure below.

Figure 1: UAS image showing each team members’ functions in the boat at the moment just after the UAS launch.
Figure 1: UAS image showing each team members’ functions in the boat at the moment just after the UAS launch.

 

While one member pilots the boat, another operates the UAS. Another team member is responsible for taking photos of the whales so we can match individuals with the UAS videos. And the last team member puts the calibration board of known length in the water, so that we can later calculate the exact size of each pixel at various UAS altitudes, which allows us to accurately measure whale lengths. Team members also alternate between these and other functions.

Sometimes we put the UAS in the air and no whales are at the surface, or we can’t find any. These animals only stay at the surface for a short period of time, so working with whales can be really challenging. UAS batteries only last for 15-20 minutes and we need to make the most of that time as we can. All of the members need to help the UAS pilot in finding whales, and that is when, besides vision, we need to use hearing too. The sound of the whale’s respiration (blow) can be very loud, especially when whales are closer. Once we find the whale, we give the location to the UAS pilot: “whale at 2 o’clock at 30 meters from the boat!” and the pilot finds the whale for an overflight.

The opposite – too many whales around – can also happen. While we are observing one individual or searching for it in one direction, we may hear a blow from another whale right behind us, and that’s the signal for us to look for other individuals too.

But now you might be asking yourself: “ok, I agree with vision and hearing, but what about the other three senses? Smell? Taste? Touch?” Believe it or not, this happens. Sometimes whales surface pretty close to the boat and blow. If the wind is in our direction – ARGHHHH – we smell it and even taste it (after the first time you learn to close your mouth!). Not a smell I recommend.

Fecal samples are responsible for the 5th sense: touch!

Once we identify that the whale pooped, we approach the fecal plume in order to collect as much fecal matter as possible (Fig.2).

Figure 2: A: the poop is identified; B: the boat approaches the feces that are floating at the surface (~30 seconds); C: one of the team members remains at the bow of the boat to indicate where the feces are; D: another team member collects it with a fine-mesh net. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 2: A: the poop is identified; B: the boat approaches the feces that are floating at the surface (~30 seconds); C: one of the team members remains at the bow of the boat to indicate where the feces are; D: another team member collects it with a fine-mesh net. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).

 

After collecting the poop we transfer all of it from the net to a small jar that we then keep cool in an ice chest until we arrive back at the lab and put it in the freezer. So, how do we transfer the poop to the jar? By touching it! We put the jar inside the net and transfer each poop spot to the jar with the help of water pressure from a squeeze bottle full of ambient salt water.

Figure 3: Two gray whale individuals swimming around kelp forests. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 3: Two gray whale individuals swimming around kelp forests. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).

 

That’s how we use our senses to study the whales, and we also use an underwater sensory system (a GoPro) to see what the whales were feeding on.

GoPro video of mysid swarms that we recorded near feeding gray whales in Port Orford in August 2016:

Our fieldwork is wrapping up this week, and I can already say that it has been a success. The challenging Oregon weather allowed us to work on 25 days: 6 days in Port Orford and 19 days in the Newport and Depoe Bay region, totaling 141 hours and 50 minutes of effort. We saw 195 whales during 97 different sightings and collected 49 fecal samples. We also performed 67 UAS flights, 34 drifter deployments (to collect acoustic data), and 34 GoPro deployments.

It is incredible to see how much data we obtained! Now starts the second part of the challenge: how to put all of this data together and find the results. My next steps are:

– photo-identification analysis;

– body and skin condition scoring of individuals;

– photogrammetry analysis;

– analysis of the GoPro videos to characterize prey;

– hormone analysis laboratory training in November at the Seattle Aquarium

 

For now, enjoy some pictures and a video we collected during the fieldwork this summer. It was hard to choose my favorite pictures from 11,061 photos and a video from 13 hours and 29 minutes of recording, but I finally did! Enjoy!

Figure 4: Gray whale breaching in Port Orford on August 27th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 4: Gray whale breaching in Port Orford on August 27th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).

 

Figure 5: Rainbow formation through sunlight refraction on the water droplets of a gray whale individual's blow in Newport on September 15th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 5: Rainbow formation through sunlight refraction on the water droplets of a gray whale individual’s blow in Newport on September 15th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).

 

Likely gray whale nursing behavior (Taken under NOAA/NMFS permit #16111 to John Calambokidis):

A few things I’ve learned while writing a thesis

By: Amanda Holdman, MS student, Geospatial Ecology and Marine Megafauna Lab & Oregon State Research Collective for Applied Acoustics, MMI

“Never use the passive where you can use the active.” I recently received this comment in a draft of my thesis. While this pertained to a particular edit, it has since become my motto for writing in general – to stay active in writing. I knew before beginning this process, from my peers, that it takes time to write a thesis or dissertation, and usually much longer than anticipated, resulting in late caffeinated hours. My roommates have recently moved out, making it a perfect opportunity to convert my home into a great evening office. I needed fewer distractions so I unplugged the TV and set up a desk with ideal conditions for writing. I’m in a race against time with my defense set for only a month away, and getting into good writing habits has helped me smooth out a lot of the writing stress, so I figured I could share those tips.

  1. Write sooner

The writing process can be daunting due to its size and importance. In the beginning I tended to wait until I thought I had researched enough about the topic. But, I have now learned not to wait until all the data is in and the results are clear to start writing. Some researchers might argue that results are needed before one can put the proper spin on the introduction, but spin isn’t quite needed for a first draft.  Most of the writing can be actually be done before all the data have arrived. For example, I didn’t need to know the results of my observations before writing the manuscript about them; the rationale for having done the research doesn’t change with the results, so a draft of the introduction can be written without knowing the results. The methodology also doesn’t depend on the results, nor does the analysis that will be performed on the data, so a good framework for the results section can be written before all of the statistical tests are run. And before I know it, I have almost a full draft, just with quite a few gaps.

  1. Write Continually

Productivity begets productivity, so don’t stop writing. It keeps my mind working and my project moving. I try to write a little every day or set a goal word limit. (500 words a day is easily obtainable and you feel proud at the end of the day). Writing as frequently as possible for me has helped to reveal gaps in my knowledge or understanding. Vague and disoriented writing tends to reflect a vague and disorganized thought, leading me to dig through the literature for more clarity.

  1. Figure out how you write and edit

Some people are better writers when they first put their thoughts on paper and plan to go back and fix awkward sentences, poor word choices, or illogical sentences later. My perfection has always plagued me, so I always edit as a write, with one goal only: to make sure I’ve expressed the idea in my head clearly on the page. I don’t move on until the sentence (or thought) makes sense with no ambiguity in the meaning. Clarity of thought is always the aim in writing a manuscript, yet it is very difficult to come back to a section of writing days or weeks later and sort out a mess of thought if I don’t clarify my writing while the thought is still fresh in your head. This means I am constantly re-reading and revising what I’ve written, but also hopefully means that when I submit something to my advisor or committee it only needs simple revisions, thereby saving time by getting as “close to right” as I could the first time around.

 

 

 

  1. Develop a routine

It’s important to learn when and what makes us productive. For me, writing in several short bursts is more efficient than writing in a few, long extended periods. When I try to write for long hours, I notice my concentration diminishing around the hour mark, so I try to take frequent 15 minute breaks. For me, the most productive parts of the day are the beginning the end. It’s important to build momentum early, and have a routine for ending the day too. At the end of each day, I always leave myself something easy to get started with the next day, so I wake up knowing exactly where I am going to start.

  1. Find a template

Usually, when we decide on a date and deadlines for the final draft of our thesis due, we’re so frantic and pressed for time trying to get all the content, that we forget about the time it takes to make a draft pretty. My last HUGE time-saving tip is to find a colleague who has recently turned in their thesis or dissertation and still has their final word document. You can save time by reusing their document as a template for margins, page number position and other formatting guidelines. Everything you’ve written can easily be pasted into a formatted template.

  1. Keep your motivation near

Finally, always try to keep the end result in mind. Whether it be holding a beautifully bound version of your thesis or a first author publication, keeping motivated is important. Publishing is not a requirement for completing a thesis but it is an ultimate goal for me. I know I owe it to myself, the people who I have worked with along the way, those who have supported me in some way (e.g., my committee), and to the funders that have helped pay for the research. Plus, to have a competitive edge in the next job I apply for, and to get the most leverage possible from my masters training, it is important for me to finish strong with a publication or two. Visualizing the end result helps me to take action to finish my thesis and advance my career.

Now, I think it’s about time to stop writing about writing a thesis and get back to actually writing my thesis.

 

Understanding How Nature Works

By: Erin Pickett, MS student, Oregon State University

They were climbing on their hands and knees along a high, narrow ridge that was in places only two inches wide. The path, if you could call it that, was layered with sand and loose stones that shifted whenever touched. Down to the left was a steep cliff encrusted with ice that glinted when the sun broke down through the thick clouds. The view to the right, with a 1,000ft drop, wasn’t much better.

The Invention of Nature by Andrea Wulf

This is a description of Alexander von Humboldt and the two men that accompanied him when attempting to summit Chimborazo, which in 1802 was believed to be the highest mountain in the world. The trio was thwarted about 1,000 ft from the top of the peak by an impassable crevice but set a record for the highest any European had ever climbed. This was a scientific expedition. With them the men brought handfuls of scientific instruments and Humboldt identified and recorded every plant and animal species along the way. Humboldt was an explorer, a naturalist, and an observer of everything. He possessed a memory that allowed him to recount details of nature that he had observed on a mountain in Asia, and find patterns and connections between that mountain and another in South America. His perspective of nature as being interconnected, and theories as to why and how this was so, led to him being called the father of Ecology. In less grandeur terms, Humboldt was a biodiversity explainer.

Humboldt sketched detailed images like this one of Chimborazo, which allowed him to map vegetation and climate zones and identify how these and other patterns and processes were related. Source: http://www.mappingthenation.com/blog/alexander-von-humboldt-master-of-infographics/

In a recent guest post on Carbon Brief, University of Connecticut Professor Mark Urban summarized one of his latest publications in the journal Science, and called on scientists to progress from biodiversity explainers to biodiversity forecasters.  Today, as global biodiversity is threatened by climate change, one of our greatest scientific problems has become accurately forecasting the responses of species and ecosystems to climate change. Earlier this month, Urban and his colleagues published a review paper in Science titled “Improving the forecast for biodiversity under climate change”. Many of our current models aimed at predicting species responses to climate change, the authors noted, are missing crucial data that hamper the accuracy and thus the predictive capabilities of these models. What does this mean exactly?

Say we are interested in determining whether current protected areas will continue to benefit the species that exist inside their boundaries over the next century. To do this, we gather basic information about these species: what habitat do they live in, and where will this habitat be located in 100 years? We tally up the number of species currently inhabiting these protected areas, figure out the number of species that will relocate as their preferred habitat shifts (e.g. poleward, or higher in elevation) and then we subtract those species from our count of those who currently exist within the boundaries of this protected area. Voilà, we can now predict that we will lose up to 20% of the species within these protected areas over the next 100 years*.  Now we report our findings to the land managers and environmental groups tasked with conserving these species and we conclude that these protected areas will not be sufficient and they must do more to protect these species. Simple right? It never is.

This predication, like many others, was based on a correlation between these species ranges and climate. So what are we missing? In their review, Urban et al. outline six key factors that are commonly left out of predictive models, and these are: species interactions, dispersal, demography, physiology, evolution and environment (specifically, environment at appropriate spatiotemporal scales) (Figure 1). In fact, they found that more than 75% of models aimed at predicting biological responses to climate change left out these important biological mechanisms. Since my master’s project is centered on species interactions, I will now provide you with a little more information about why this specific mechanism is important, and what we might have overlooked by not including species interactions in the protected area example above.

Figure 1: Six critical biological mechanisms missing from current biodiversity forecasts. Source: Urban et al. 2016
Figure 1: Six critical biological mechanisms missing from current biodiversity forecasts. Source: Urban et al. 2016

I study Adelie and gentoo penguins, two congeneric penguin species whose breeding ranges overlap in a few locations along the Western Antarctic Peninsula. You can read more about my research in previous blog posts like this one. Similar to many other species around the world, both of these penguins are experiencing poleward range shifts due to atmospheric warming. The range of the gentoo penguin is expanding farther south than ever before, while the number of Adelie penguins in these areas is declining rapidly (Figure 2). A correlative model might predict that Adelie penguin populations will continue to decline due to rising temperatures, while gentoo populations will increase. This model doesn’t exactly inform us of the underlying mechanisms behind what we are observing. Are these trends due to habitat shifts? Declines in key prey species? Interspecific competition? If Adelie populations are declining due to increased competition with other krill predators (e.g. gentoo penguins), then any modelling we do to predict future Adelie population trends will certainly need to include this aspect of species interaction.

Figure 2. A subset of the overall range of Adelie and gentoo penguins and their population trends at my study site at Palmer Station 1975-2014. Source: https://www.allaboutbirds.org/on-the-antarctic-peninsula-scientists-witness-a-penguin-revolution/
Figure 2. A subset of the overall range of Adelie and gentoo penguins and their population trends at my study site at Palmer Station 1975-2014. Source: https://www.allaboutbirds.org/on-the-antarctic-peninsula-scientists-witness-a-penguin-revolution/

Range expansion can result in novel or altered species interactions, which ultimately can affect entire ecosystems. Our prediction above that 20% of species within protected areas will be lost due to habitat shifts does not take species interactions into account. While some species may move out of these areas, others may move in. These new species may potentially outcompete those who remain, resulting in a net loss of species larger than originally predicted. Urban et al. outline the type of data needed to improve the accuracy of predictive models. They openly recognize the difficulties of such a task but liken it to the successful, collective effort of climate scientists over the past four decades to improve the predictive capabilities of climate forecasts.

As a passionate naturalist and philosopher, there is no doubt Humboldt would agree with Urban et al.’s conclusion that “ultimately, understanding how nature works will provide innumerable benefits for long-term sustainability and human well-being”. I encourage you to read the review article yourself if you’re interested in more details on Urban et al.’s views of a ‘practical way forward’ in the field of biodiversity forecasting. For a historical and perhaps more romantic account of the study of biodiversity, check out Andrea Wulf’s biography of Alexander von Humboldt, called The Invention of Nature.

 *This is an oversimplified example based off of a study on biodiversity and climate change in U.S. National parks (Burns et al. 2003)

References:

Burns, C. E., Johnston, K. M., & Schmitz, O. J. (2003). Global climate change and mammalian species diversity in US national parks. Proceedings of the National Academy of Sciences100(20), 11474-11477.

Urban, M. 14 September 2016. Carbon Brief. Guest post: How data is key to conserving wildlife in a challenging environment. From: https://www.carbonbrief.org/guest-post-data-key-conserving-wildlife-changing-climate (Accessed: 22 September 2016)

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’er, G., Singer, A., … & Gonzalez, A. (2016). Improving the forecast for biodiversity under climate change. Science353(6304), aad8466.

Wulf, A. (2015). The Invention of Nature: Alexander Von Humboldt’s New World. Knopf Publishing Group.

Cetaceans in the news

By Florence Sullivan, MSc Student Oregon State University, Department of Fisheries and Wildlife

It’s been a couple long, busy weeks here at the GEMM lab as my field season has wrapped up and new labmates are just getting started. There are students in the lab at all hours organizing, processing, and analyzing data. Much of our work investigating the spatial and temporal patterns of marine mammals around the globe takes long hours of parsing through information to bring you results. Systematic sampling is an important research tool but, sometimes, exciting discoveries just wash up at your front door.

Humpback Whale stranding in Puget Sound

http://westseattleblog.com/2016/08/stranded-whale-reported-south-of-fauntleroy-ferry-dock/

Just recently on August 7, 2016, a 39 foot, juvenile female Humpback whale stranded at the Fauntleroy Ferry Terminal in West Seattle, WA. This is very close to my home town, and a recent GEMM lab intern was in the area at the time, so we have a photo of this event for you!  The humpback came ashore while still alive, but despite efforts to keep it comfortable and wet, the whale died before the tide returned.

Humpback whale stranded at Fauntleroy Ferry Terminal, West Seattle. photo credit: Sarah Wiesner
Humpback whale stranded at Fauntleroy Ferry Terminal, West Seattle. photo credit: Sarah Wiesner

A cursory necropsy, conducted on site by researchers from NOAA fisheries and the Cascadia Research Collective, showed the animal had multiple internal parasites and injuries associated with beaching, as well as being in poor nutritional condition overall. There were also bites on the lower jaw consistent with killer whale encounters, and a pod of orca had been spotted in the area the previous day. Necropsies are an important source of data about the basic physiology and biology of marine mammals that is not accessible through any other means. The carcass was towed to a deep-water disposal site approved by federal and state agencies and sunk.  Humpback whale sightings in the Salish Sea have increased in the last five years. This, together with the fact that this juvenile was in poor nutritional condition, could indicate that there is competition for resources.

New Species Discovered!

There have been two new species of cetaceans discovered in recent months!

http://news.nationalgeographic.com/2016/07/new-whale-species/

http://www.npr.org/sections/thetwo-way/2016/07/27/487665728/mysterious-and-known-as-the-raven-scientists-identify-new-whale-species

The first exciting announcement was published in the journal Marine Mammal Science in July. Japanese fishermen in the North Pacific have long reported a small, black beaked whale they call karasu, “raven.” In 2013, Japanese researchers published a paper about this black, beaked whale variant of the sub-family Berardiinae using three stranded carcasses, but the sample size was too small to make any conclusions. Three years later there is strong genetic evidence that this is a new species of beaked whale based on (1) genetic analysis of samples from a stranded animal on St. George, Alaska (2) skeletons in a high school in Unalaska, Alaska, (3) skeletons in the Smithsonian archives, and (4) skeletons in other museum and institutional collections around the Pacific Rim. The species still needs to be described and named, but some researchers have suggested Berardius beringiae to honor the sea where it was found. What do you think?

This beaked whale stranded in the Aleutian Islands in 2004, and was measured by Reid Brewer of the University of Alaska Southeast.  Analysis of tissue samples later identified the whale as one of the new species. Photo Credit: Don Graves

http://www.smithsonianmag.com/smithsonian-institution/new-species-ancient-river-dolphin-discovered-exctinct-millions-years-ago-180960146/

The second announcement of a new species came from the Smithsonian Institution earlier this month. A skull of the newly-named Arktocara yakataga species was found more than 60 years ago near the present day city of Yakutat, Alaska. Obviously belonging to a prehistoric dolphin, the skull was kept at the Smithsonian’s National Museum of Natural History until new research found that it was actually a previously undiscovered species. A. yakatoga is thought to be a relative of the present day South Asian River Dolphin, and is both the northernmost, and one of the oldest dolphin fossils found to date. This new find is a reminder to everyone that not all discoveries are made in the field. Museum and archival collections continue to play an important role in the advancement of science and knowledge. Check out the link above to see some awesome artistic renderings of the new species, as well as a 3D scan of the skull in question.

Humpbacks vs Orcas

http://onlinelibrary.wiley.com/doi/10.1111/mms.12343/full

http://news.nationalgeographic.com/2016/08/humpback-whales-save-animals-killer-whales-explained/

Sounds like the next big B-Sci-fi movie doesn’t it? Well, this story is the latest to go viral on the internet. Published on July 20, 216 in the journal Marine Mammal Science, the study investigated accounts of humpback whales interfering with killer whale attacks. Researchers looked at 115 interactions between the two species. Humpbacks initiated 57% of the interactions, and 87% of these moments occurred when the killer whales were attacking or feeding on prey.  Surprisingly, only 11% of the prey in these events were humpback whales, while the remaining 89% ranged from other cetaceans to pinnipeds, to a sunfish! The authors suggest that the humpback whales were alerted to attacking killer whales in the area by vocalizations, and that this attracts them to the scene regardless of the species being attacked. Although kin selection (care for or defense of relatives to preserve your family’s genetics even though the action may be detrimental to self), or reciprocity (exchange between individuals for mutual benefit) might explain some of this behavior, the fact that humpback whales so often defended other species means that we cannot rule out the possibility of altruistic behavior.  This is a pretty fascinating read, and definitely opens up some new questions for researchers!

Humpback whales.
Humpback whales. Photo credit: Florence Sullivan

Olympians in Rio: keep your mouths closed! But what are the resident marine animals to do?

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

August 5th was the Olympic games opening date in Rio de Janeiro, Brazil, the city where I am from. The opening ceremony was a big success and everybody seems to be enjoying the sporting events and all of the news that the city is offering. However, behind all the colors, magic and joy of this big event, Brazilians are very unsatisfied about hosting an event like this while the whole country is simultaneously dealing with a big educational, health, political and economic crisis at the moment.

Unfortunately, the crisis also affects the environment and is consequently affecting athletes that are competing in our “carioca” waters. Guanabara Bay, more specifically, where the sailing competitions are taking place, receive waters from more than 50 rivers and streams, as displayed below.

Figure 1: Hydrographic map of the Guanabara Bay region, Rio de Janeiro, Brazil, showing rivers and streams (in blue) that feed into the Bay.
Figure 1: Hydrographic map of the Guanabara Bay region, Rio de Janeiro, Brazil, showing rivers and streams (in blue) that feed into the Bay.

 

Much of the water is not treated and brings sewage and garbage from upstream (Fig.2). Although the government reports that the pollution index in the Bay conforms to national and international standards, and that the areas where competitions are taking place are clean and present no risk to athlete health, public health experts advise athletes to keep their mouth closed whenever they are in contact with the water, as reported by the Independent newspaper (http://www.independent.co.uk/sport/olympics/2016-rio-olympics-water-feces-athletes -mouth-shut-brazil-a7163021.html). The goal was to clean up 80% of the Bay in time for the Olympic games, however this goal was far from achieved and the “solution” was to install barriers to try to avoid waste and untreated sewage reaching the event area.

Figure 2: Pollution contrasting with the beauty of the Sugar Loaf, one of the main tourist attractions in the city. The photo shows the area where competitions are taking place. Source: http://www.insidethegames.biz/articles/1027142/brazilian-politician-accused-of-undermining-effort-to-clean-guanabara-bay-by-publicity-seeking-jump-into-water
Figure 2: Pollution contrasting with the beauty of the Sugar Loaf, one of the main tourist attractions in the city. The photo shows the area where competitions are taking place.
Source: http://www.insidethegames.biz/articles/1027142/brazilian-politician-accused-of-undermining-effort-to-clean-guanabara-bay-by-publicity-seeking-jump-into-water.

 

Bacteria, fecal coliforms and metals occur in the Bay. Professionals from Oswaldo Cruz Foundation (Fiocruz), one of the world’s main public health research institutions, found a drug-resistant bacterium in the Bay waters, which is resistant to antibiotics and may cause multiple infections (https://www.rt.com/news/214807-brazil-olympic-venue-superbug/). Metals like mercury, one of the most toxic metals, can also be found in the Bay and shows long-term effects on marine life of the ecosystem.

Guanabara Bay used to be part of the migratory route of Southern right whales (Eubalaena australis), but unfortunately we do not see the whales in the area anymore. We also do not see turtles any longer and populations of prawns are extremely reduced. On the other hand, mussels, biological indicators of ambient pollution due to their sessile and filter-feeding habits, are continuously proliferating in the Bay. These individuals can accumulate high pollutant levels and are not safe to eat when present in polluted areas. However, local fishermen persist in eating mussels and fish from the Bay.

The Guiana dolphin (Sotalia guianensis) is the only mammal that still frequents the Bay waters and, while about 400 Guiana dolphins inhabited the region in the 80s, currently there are only 34 individuals (http://www.abc.net.au/news/2016-06-27/rio27s-dolphins-need-olympic-effort-to-survive-toxic-waters/7543544). The project MAQUA, responsible for monitoring the dolphins in the Guanabara Bay, correlated the decline of the population with worsening water quality, fishing and noise, as published in an article in “O Globo”, the main Brazilian newspaper (http://oglobo.globo.com/rio/populacao-de-golfinhos-da-baia-de-guanabara-sofre-reducao-de-90-em-tres-decadas-1-16110633).
In this article they presented pictures of dolphins from the Guiana dolphin population in the Bay, including the unfortunate consequences on human interactions (Fig.3).

Figure 3: Guiana dolphins in Guanabara Bay, Rio de Janeiro. A: some of the remaining individuals of Guiana dolphin population from the Guanabara Bay; B: a dolphin plays with a plastic bag; C: a dolphin that suffered an accident with a nylon yarn when young presents a scar across its whole circumference; D: a dolphin exhibit the absence of the pectoral fin. Source: O Globo, 2015 (http://oglobo.globo.com/rio/populacao-de-golfinhos-da-baia-de-guanabara-sofre-reducao-de-90-em-tres-decadas-1-16110633).
Figure 3: Guiana dolphins in Guanabara Bay, Rio de Janeiro. A: some of the remaining individuals of Guiana dolphin population from the Guanabara Bay; B: a dolphin plays with a plastic bag; C: a dolphin that suffered an accident with a nylon yarn when young presents a scar across its whole circumference; D: a dolphin exhibit the absence of the pectoral fin.
Source: O Globo, 2015 (http://oglobo.globo.com/rio/populacao-de-golfinhos-da-baia-de-guanabara-sofre-reducao-de-90-em-tres-decadas-1-16110633).

 

This dolphin population is living in heavily polluted waters caused solely by human behavior. Although dolphins may distinguish between trash and food, they feed on contaminated fish – a consequence of bioaccumulation.

During my master’s degree at the Oswaldo Cruz Foundation in Rio de Janeiro, I undertook a toxicological analysis of different species of dolphins (Lemos et al. 2013; http://www.sciencedirect.com/science/article/pii/S0147651313003370). We found high levels of different metals, such as mercury and cadmium, in animals along the north coast of Rio de Janeiro. Just like the mussels, dolphins bioaccumulate high pollutant levels in their tissues and organs, primarily via feeding, but also through dermal contact. Metals and other pollutants present in polluted waters, like the Guanabara Bay, enter the food chain and affect multiple trophic levels, compromising health.

Dolphins from the Guanabara Bay are feeding on the same prey as the local fisherman, and act as sentinels of the environment, warning of public health concerns for humans. Just like humans, these dolphins are long-lived and large mammals, but they live every day in these waters and must open their mouths to survive. If we are concerned about human athletes spending a few hours in the water, we should be outraged at the conditions we force marine animals to live in daily in the Rio de Janeiro region. The dolphins have the intrinsic right to live in a non-polluted environment and be healthy.

Recapping and Reflecting on the International Marine Conservation Conference!

By: Amanda Holdman, MS student, Geospatial Ecology and Marine Megafauna Lab & Oregon State Research Collective for Applied Acoustics, MMI

The GEMM Lab recently returned from the 4th International Marine Conservation Congress (IMMC4) in St. John’s, Newfoundland, Canada, and it was a whirlwind of activity to say the least. The flights were long and the morning coffee was scarce, but the setting was beautiful and plenty of scientific fun was had! The IMCC conferences are the largest international academic conferences on marine conservation and the theme of this year’s conference was to “Make Science Matter”, or in my interpretation “to use conservation science to drive policy change and implementation”. Over five days we were exposed to a flood of new ideas, hypothesis, methods/techniques, analyses and findings – even presenting our own!

Leigh, Florence, and I were all slated to give a talk on the opening day of presentations. Leigh presented on her new method for analyzing animal movement data in space and time, Florence on the effects of vessel activities on gray whales, and myself on the habitat use of harbor porpoise off of the Oregon Coast.

The conference was filled with non-stop talks, lunch sessions that incorporated workshops, student activities with plenary speakers, and an evening activity planned for every night. Short breaks during the conference shenanigans allowed for some exploring of the St. John’s area including Signal Hill, Cape Spear, and the George Street Festival. Highlights included humpback mom and calf, fin whales (my first time seeing them), dozens of seabirds I wish I could identify and some popular Canadian music.

IMG_0204View from Signal Hill, where the first transatlantic wireless signal was received in 1901.

IMG_0224 The Arkells playing at the George St. Festival.

IMG_0244 Light house at Cape Spear – the Eastern most point of North America!

The conference was an awesome place to learn, meet and network with new friends, and catch up with some familiar faces. For Florence and I, our research fit perfectly into the theme of the IMCC conference. Being able to translate results of our work into relevant actions that can lead to improved marine conservation was an amazing feeling. Entering the academic sphere for the first time can be daunting, but the IMCC community was friendly, open and dedicated. Having others outside of our OSU family take an interest in our research truly shows that all of our hard work has paid off. We received great feedback and even some suggestions we could incorporate into our manuscript submissions! Definitely not something to be taken for granted!

On a more personal note, my talk, “The spatio-temporal distribution and ecological drivers of harbor porpoise off of the Oregon coast” seemed to be well received, I was honored to be awarded runner up for best student presentation by the conference!

IMG_0257

I would not have received this award if it was not for Leigh, my committee members, OSU, and my lab mates. I couldn’t have been more proud of our lab and the feedback that we received at IMCC.

But now, the stress is over, the audience is gone, I’m still riding my high but I’ve found a moment of quietness on the plane ride home to analyze myself. I’ve been to a few regional conferences, and have been lucky enough to attend two large international conferences. However, now that I am nearing the end of graduate school (23 months down, 4 to go), it thus seems like a sensible time to reflect on how to make the most of these trips and experiences.

Apart from managing our research projects and scientific writing in graduate school, we are faced with the big challenge of presenting our research to a range of audiences. Oral presentations are one of the most important ways in which we communicate scientific results to other scientists and to be honest, NOTHING paralyses me more than having to present my work – or so I thought.

I am no stranger to sweaty palms and a racing heart. Whether it’s 5 people, 50 people, or 500 people – public speaking has always been a gut wrenching experience for me. When it comes to presentations, my flight response is in full swing, and the only thing that keeps me from running away from the presentation is that I would be more embarrassed fleeing than just giving the presentation.

However, gradual exposure and better practice over the past couple of years has helped me get over my fear of public speaking. I can’t say that I never get nervous when I have to speak in front of other people, but now my fear is controllable. Now, when I feel myself starting to get anxious I remember that while these feelings are very much real, they do not mean that I cannot give a good talk. The trick for me was learning to be separate from my anxiety by acknowledging it and allowing myself to have that feeling, and then deciding that even with that feeling I can move forward. It took quite a bit of practice for me not to be overwhelmed by these feelings of anxiety – but I’m happy to report that presenting in large groups DOES get easier with practice!

So for me, speaking at IMCC granted me with a sense of confidence, perhaps even a career-changing affirmative opportunity. Scouting out your audience or the room you speak in advance, writing your talk well before the delivery date, and practicing it numerous times reduces an enormous amount of pre-presentation jitters.  I’ve learned how to manage the jitters in order to give a good presentation. In fact, I think public speaking can even be fun in addition to being a great way to spread your message!

Doing a masters (Or PhD) means you constantly challenge yourself and improve your skills. As I continue to encounter new situations and tackle new challenges, I expect that I will go through more cycles of lag and growth as I did with public speaking. I hope that I will have the perspective and patience to appreciate the lag times as integral parts of my development. The IMCC conference was only a snapshot of a major high, but it was an important milestone of my scientific career and personal journey.

Here’s a few more pictures from the beautiful St. Johns! IMG_0253Jelly bean row!

IMG_0193Eating lunch and overlooking the harbor at Signal Hill.

IMG_0273Boat houses at Quidi Vidi Harbour.

 

Papahānaumokuākea: soon to be the world’s largest marine protected area?

By Erin Pickett, MS student, Oregon State University

On January 29, 2016, a group of native Hawaiian community leaders and conservation practitioners wrote a letter of request to President Barack Obama asking him to expand Papahānaumokuākea Marine National Monument1

Papahānaumokuākea is a UNESCO World Heritage Site and at the time of its creation in 2006, it became the world’s largest fully protected marine area2. The monument encompasses 140,000 square miles and surrounds the Northwestern Hawaiian Island (NWHI) chain, which extends about 2000 km northwest from the main Hawaiian Islands to Kure atoll (see map below). This monument was originally created through use of the Antiquity Act of 1906, which grants the President of the United States the authority to protect valuable public land through the establishment of a national monument3. The initial letter of request sent to President Obama in January called on the President to use his executive power to expand Papahānaumokuākea marine national monument.

This letter of request was put simply. The letter writers believed that as an island boy himself, President Barack Obama understands the importance of the ocean to the people of Hawai’i, especially future generations. This letter and the discussions that have since followed it, emphasize not only the biological value of conserving this large swath of marine habitat, but also the cultural significance of preserving such a place. In the field of marine biology we don’t traditionally think of marine protected areas (MPAs) as “…cultural seascapes that have meaning and significance in the formation and perpetuation of oceanic identity4,” however in the case of the expansion of Papahānaumokuākea, cultural justification is aptly interwoven with biological conservation. The proposed expansion of this marine protected area is especially significant to me for this reason.

While I am not native Hawaiian, much of my life is tied to the ocean. My personal life and my current career as a master’s student of marine science are driven by aloha and malama ‘āina. These two concepts are core tenets of Hawaiian culture and they describe a profound love (aloha) and deep respect and sense of caring (malama) for the āina, or land. I have never felt more aloha or such a strong sense of caring for a place than for Papahānaumokuākea.

Papahānaumokuākea is a sacred place; a place where the Hawaiian people believe life began. Today, the islands, atolls and the surrounding ocean within the monument continue to create and sustain vast quantities of life, in the form of marine species. The use of the monument is limited to cultural, scientific and educational activities, while activities such as commercial fishing and deep-sea mining are prohibited4,5. One primary benefit of large MPAs is that they improve the state of an ecosystem by supporting sufficient numbers of large and far-ranging predators6. The waters surrounding the NWHI support high numbers of large fish, sharks, marine mammals and seabirds. A total of 7,000 known species exist here, 25% of which are endemic7. The expansion of this monument would mean greater protection for these species, and for important pelagic habitats such as seamounts. Underwater seamounts are biodiversity hot spots and a vast number of them exist outside of the current boundaries but within the limits of the proposed expansion of the monument. Far ranging top predators such as seabirds would benefit greatly from an expanded protected area that would reduce the chance of interactions with longline fishing vessels. The foraging ranges of many of the 14 million seabirds that exist in the monument extend beyond its current boundaries4,8. The Hawaiian longline fishery is especially dangerous for Laysan and black-footed albatross, and hooks an estimated 1,000-2,000 of each species per year9.

The Laysan albatross, or mōlī, as it is known in Hawaiian, is the species that captured my attention the most during my time in Papahānaumokuākea. In 2010, I worked for the NOAA/NMFS Hawaiian monk seal research program on Laysan Island. While our work on Laysan was focused on the Hawaiian monk seal, it was hard to miss the energy of the presence of the mōlī. We had the opportunity to observe these birds come to the island to make nests, lay eggs and raise their chicks. The incessant sound of hundreds of thousands of albatross whistling and clicking their beaks at their mates and with their chicks is one I will never forget. You can hear these sounds for yourself in a video that Rachael included in a previous blog post about her time on Midway atoll. On Laysan, I had the opportunity to connect deeply with a natural place and this connection reinforced the feeling of aloha ‘aina.

While in the NWHI, we occupied much of our daily life with not only observing and connecting with the wildlife, but also with carrying out conservation activities, such as monitoring the local monk seal population and removing marine debris from beaches. While Laysan is remote, it has not escaped the far reaches of marine plastic pollution (see Rachael’s blog for more on this). Additionally, many of the NWHI are in a perpetual state of restoration and invasive species removal projects. After Laysan, I spent time working on Lisianski Island and then Kure atoll, where we worked tirelessly to eradicate an invasive weed, Verbesina encelioides, and replace it with native plants that we had cultivated. Throughout all of these activities, there was always a feeling that it was our duty to malama ‘aina, to care for and protect these fragile islands and the species that depend on them.

A significant amount of momentum has been gained since January, with one important development being a formal proposal that outlines the main points of this request to the President. These include a request to expand the perimeter of the monument to the limits of the U.S. exclusive economic zone, which lies an additional 150 nm beyond its current boundaries. This expansion would more than quadruple the monument’s current size and make it the world’s largest contiguously protected area. The Obama administration has sent delegates to Hawaii to learn more and has intentions to develop an official federal proposal10. While the timeline of this is unclear, a local coalition of community leaders are actively garnering public support to encourage the Obama administration to sign this expansion into law.

There was a meeting held last night on Kauai to hear public input regarding the proposed expansion of Papahānaumokuākea and because I was not able to attend I was inspired to write this blog to share my thoughts about why I believe further protection of this monument is a pono (moral, just, righteous) decision. The place-based connection I have with Hawai’i and its surrounding waters are what have guided my career in the fields of marine science and conservation. For me, this connection is with Hawai’i, but for you it may your own hometown, island, backyard or nearby mountain peak.

Our love of these places is significant because it facilitates a greater understanding of why they are important to protect. In the field of conservation today, it is especially critical that we foster these types of connections. Preserving wild places, whether they be remote island ecosystems or more easily accessible nature parks, is one way we can ensure that more people have the opportunity to make these connections.

 

References

1 Eagle, N. (2016). Honolulu Civil Beat. Hawaiians Press Obama to Expand NW Islands Marine Monument. Retrieved from http://www.civilbeat.org/2016/02/should-obama-expand-papahanaumokuakea/

2 Pew Charitable Trust. Global Ocean Legacy-Hawaii (2016). Fact sheet.Papahānaumokuākea Marine National Monument: Expanding protections to conserve Hawaiian culture and biodiversity Retrieved from: http://www.pewtrusts.org/en/research-and-analysis/fact-sheets/2016/05/papahanaumokuakea-marine-national-monument

3 “Antiquities Act” Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 4 March 2016. Web. 2 August 2016.

4 Kerr, J., et al. 2016. PUʻUHONUA: A PLACE OF SANCTUARY. The Cultural and Biological Significance of the proposed expansion for the Papahānaumokuākea Marine National Monument.

5 Papahānaumokuākea Marine National Monument: Resource Protection. Retrieved from: http://www.papahanaumokuakea.gov/resource/

6 Edgar, Graham J., et al. “Global conservation outcomes depend on marine protected areas with five key features.” Nature 506.7487 (2014): 216-220.

7 National Marine Sanctuaries (2016), National Oceanic and Atmospheric Administration. Accessed on 01 February 2016: http://sanctuaries.noaa.gov/#PM

8 Papahanaumokuakea Marine National Monument Management Plan 2008; KE Keller, AD Anders, SA Shaffer, MA Kappes, B Flint, and A Friedlander, 2009. Seabirds: A Marine Biogeographic Assessment of the Northwestern Hawaiian Islands.

9 Cousins, K.L., et al. Managing pelagic longline-albatross interactions in the North Pacific Ocean. Retrieved from: http://www.wpcouncil.org/documents/managebird.pdf

10 Eagle, N. (2016). Hawaii Lawmakers To Obama: Don’t Grow Marine Monument. Honolulu Civil Beat. Retrieved from: http://www.civilbeat.org/2016/05/hawaii-lawmakers-to-obama-dont-grow-marine-monument/

 

Sunny south meets windy west

By Lauren Ashley, senior at Savannah State University and current summer intern in the GEMM Lab

Enjoying South Beach, Oregon. Photo by Katherine Bartels
Enjoying South Beach, Oregon. Photo by Katherine Bartels

My name is Lauren Ashley and I am a rising senior from Savannah State University. I am a marine science major, with dreams of becoming a veterinarian. I would have never thought I would experience a summer on the northwest coast. And let me tell you guys, it is a huge adjustment!

I secured an internship with the Living Marine Resources Cooperative Science Center (LMRCSC). I am working in the GEMM Lab at Oregon State University where I am developing an interactive display for the visitor center at the Hatfield Marine Science Center. This display will convey the results from our LMRCSC funded project about the impacts of environmental and climate change on California sea lions and their prey.

I am processing and creating the interactive maps for display through the software ArcGIS 10.3. The amount of challenges I have run into coincide with the amount of things I have learned about the software. The biggest tool I have in my arsenal for problem solving is patience. Somedays, some of the biggest challenges I face, when processing information, seem to have the most simple of solutions, as unconventional and out of the box as they may be. For example, I needed to add a raster depicting the California sea lions forecasted distribution but the files seemed to be incorrect. I went in the conventional way, several times I may add, trying to correct the data. Nothing seemed to work. Eventually my research mentor showed me that the problem could be solve simply by copying the raw data and pasting it to a blank excel file. In a course of a single day the maps can transform based on feedback and edits. And boy does that take time and thought. I am fortunate to be the intern of such a proficient GIS user. Most of what I have learned so far has come at the grace of her teachings.

As I learn to communicate science to a broad audience, most of which have no science background, I have discovered that people learn and process information in many different ways. The biggest challenge thus far is finding a balance where the map conveys information that is not too overwhelming or too broad that it takes away from the true learning outcome. We don’t want to confuse or bore our audience. The outcome of this display is to inform our audience of how environmental change influences the distribution of not just one species at a time, but a community of species through predator and prey interactions.

The very first map that I made for this project, putting it nicely, was terrible. The map, displayed below, had no labeling besides the title whatsoever. The legend was non-existent so even though I knew what the data was no one else knew. And, even though the green shapes of the Pacific northwest were obvious to me, I was told that many viewers would not know that they we looking at Oregon, Washington and Vancouver Island. As time has passed, the maps I produce have developed quite a bit, though I still have many chafes and challenges ahead of me. It is certainly becoming clear to me that effective science communication is a tricky goal.

My first attempt at a map to relate scientific results on sea lion distribution patterns to a general, non-scientific audience.
My first attempt at a map to relate scientific results on sea lion distribution patterns to a general, non-scientific audience.

Upon hearing that this internship, starting in June, would be in Newport, Oregon, my close family and friends grew excited for me, even though I would be away from them for 10 weeks.  I, on the other hand, was not too excited. Truthfully, I was nervous. I did not want to make any assumptions about a place I had barely even heard of.  The southeast USA is my home, and upon arriving in Newport after my four hour flight and a two hour drive I realized that I was transported to a whole new world. Everything was foreign to me, from the living arrangements to the time zone.

The first adjustment I had to make was a time adjustment. In Oregon, I am three hours behind where I usually am, and let me tell you, it is not fun waking up at 3:45 when you are used to waking up at 6:45 ET. To be honest, even after three weeks, I’m still not sure I am completely adjusted to Pacific Time. I have the dark circles to prove it.

Anyone that has ever been to/lived in Georgia can accurately describe the weather in two simple words: HOT and HUMID. I am used to 100 °F days during the summer and here the highest I have yet to experience is 64°F. In other words: I am freezing my tail off! The cold windy days do not usually agree with my choice of attire. I have resorted to wearing long-sleeve shirts and hoodies on a daily basis.

But all of that aside, Oregon is the MOST breathtakingly beautiful place I have ever been to. There is nothing like the Pacific Northwest coast. After my internship is up, I would not be opposed to taking a road trip to explore this whole coast. This first month has consisted of whale watching, hikes along the big creek trails, and long walks on the beach, lots of beer, and plenty of seafood. The atmosphere of this small town is very refreshing compared to life in the city.

At the Yaquina Lighthouse, Photo by Katherine Bartels
At the Yaquina Lighthouse, Photo by Katherine Bartels