Managing Oceans: the inner-workings of marine policy

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

When we hear “marine policy” we broadly lump it together with environmental policy. However, marine ecosystems differ greatly from their terrestrial counterparts. We wouldn’t manage a forest like an ocean, nor would we manage an ocean like a forest. Why not? The answer to this question is complex and involves everything from ecology to politics.

Oceans do not have borders; they are fluid and dynamic. Interestingly, by defining marine ecosystems we are applying some kind of borders. But water (and all its natural and unnatural content) flows between these ‘ecosystems’. Marine ecosystems are home to a variety of anthropogenic activities such as transportation and recreation, in addition to an abundance of species that represent the three major domains of biology: Archaea, Bacteria, and Eukarya. Humans are the only creatures who “recognize” the borders that policymakers and policy actors have instilled. A migrating gray whale does not have a passport stamped as it travels from its breeding grounds in Mexican waters to its feeding grounds in the Gulf of Alaska. In contrast, a large cargo ship—or even a small sailing vessel—that crosses those boundaries is subjected to a series of immigration checkpoints. Combining these human and the non-human facets makes marine policy complex and variable.

The eastern Pacific gray whale migration route includes waters off of Mexico, Canada, and the United States. Source: https://www.learner.org/jnorth/tm/gwhale/annual/map.html

Environmental policy of any kind can be challenging. Marine environmental policy adds many more convoluted layers in terms of unknowns; marine ecosystems are understudied relative to terrestrial ecosystems and therefore have less research conducted on how to best manage them. Additionally, there are more hands in the cookie jar, so to speak; more governments and more stakeholders with more opinions (Leslie and McLeod 2007). So, with fewer examples of successful ecosystem-based management in coastal and marine environments and more institutions with varied goals, marine ecosystems become challenging to manage and monitor.

A visual representation of what can happen when there are many groups with different goals: no one can easily get what they want. Image Source: The Brew Monks

With this in mind, it is understandable that there is no official manual on policy development.  There is, however, a broadly standardized process of how to develop, implement, and evaluate environmental policies: 1) recognize a problem 2) propose a solution 3) choose a solution 4) put the solution into effect and 4) monitor the results (Zacharias pp. 16-21). For a policy to be deemed successful, specific criteria must be met, which means that a common policy is necessary for implementation and enforcement. Within the United States, there are a multiple governing bodies that protect the ocean, including the National Oceanic and Atmospheric Administration (NOAA), Environmental Protection Agency (EPA), Fish and Wildlife Service (USFWS), and the Department of Defense (DoD)—all of which have different mission statements, budgets, and proposals. To create effective environmental policies, collaboration between various groups is imperative. Nevertheless, bringing these groups together, even those within the same nation, requires time, money, and flexibility.

This is not to say that environmental policy for terrestrial systems, but there are fewer moving parts to manage. For example, a forest in the United States would likely not be an international jurisdiction case because the borders are permanent lines and national management does not overlap. However, at a state level, jurisdiction may overlap with potentially conflicting agendas. A critical difference in management strategies is preservation versus conservation. Preservation focuses on protecting nature from use and discourages altering the environment. Conservation, centers on wise-use practices that allow for proper human use of environments such as resource use for economic groups. One environmental group may believe in preservation, while one government agency may believe in conservation, creating friction amongst how the land should be used: timber harvest, public use, private purchasing, etc.

Linear representation of preservation versus conservation versus exploitation. Image Source: Raoof Mostafazadeh

Furthermore, a terrestrial forest has distinct edges with measurable and observable qualities; it possesses intrinsic and extrinsic values that are broadly recognized because humans have been utilizing them for centuries. Intrinsic values are things that people can monetize, such as commercial fisheries or timber harvests whereas extrinsic values are things that are challenging to put an actual price on in terms of biological diversity, such as the enjoyment of nature or the role of species in pest management; extrinsic values generally have a high level of human subjectivity because the context of that “resource” in question varies upon circumstances (White 2013). Humans are more likely to align positively with conservation policies if there are extrinsic benefits to them; therefore, anthropocentric values associated with the resources are protected (Rode et al. 2015). Hence, when creating marine policy, monetary values are often placed on the resources, but marine environments are less well-studied due to lack of accessibility and funding, making any valuation very challenging.

The differences between direct (intrinsic) versus indirect (extrinsic) values to biodiversity that factor into environmental policy. Image Source: Conservationscienceblog.wordpress.com

Assigning a cost or benefit to environmental services is subjective (Dearborn and Kark 2010). What is the benefit to a child seeing an endangered killer whale for the first time? One could argue priceless. In order for conservation measures to be implemented, values—intrinsic and extrinsic—are assigned to the goods and services that the marine environment provides—such as seafood and how the ocean functions as a carbon sink. Based off of the four main criteria used to evaluate policy, the true issue becomes assessing the merit and worth. There is an often-overlooked flaw with policy models: it assumes rational behavior (Zacharias 126). Policy involves relationships and opinions, not only the scientific facts that inform them; this is true in terrestrial and marine environments. People have their own agendas that influence, not only the policies themselves, but the speed at which they are proposed and implemented.

Tourists aboard a whale-watching vessel off of the San Juan Islands, enjoying orca in the wild. Image Source: Seattle Orca Whale Watching

One example of how marine policy evolves is through groups, such as the International Whaling Commission, that gather to discuss such policies while representing many different stakeholders. Some cultures value the whale for food, others for its contributions to the surrounding ecosystems—such as supporting healthy seafood populations. Valuing one over the other goes beyond a monetary value and delves deeper into the cultures, politics, economics, and ethics. Subjectivity is the name of the game in environmental policy, and, in marine environmental policy, there are many factors unaccounted for, that decision-making is incredibly challenging.

Efficacy in terms of the public policy for marine systems presents a challenge because policy happens slowly, as does research. There is no equation that fits all problems because the variables are different and dynamic; they change based on the situation and can be unpredictable. When comparing institutional versus impact effectiveness, they both are hard to measure without concrete goals (Leslie and McLeod 2007). Marine ecosystems are open environments which add an additional hurdle: setting measurable and achievable goals. Terrestrial environments contain resources that more people utilize, more frequently, and therefore have more set goals. Without a problem and potential solution there is no policy. Terrestrial systems have problems that humans recognize. Marine systems have problems that are not as visible to people on a daily basis. Therefore, terrestrial systems have more solutions presented to mitigate problems and more policies enacted.

As marine scientists, we don’t always immediately consider how marine policy impacts our research. In the case of my project, marine policy is something I constantly have to consider. Common bottlenose dolphins are protected under the Marine Mammal Protection Act (MMPA) and inhabit coastal of both the United States and Mexico, including within some Marine Protected Areas (MPA). In addition, some funding for the project comes from NOAA and the DoD. Even on the surface-level it is clear that policy is something we must consider as marine scientists—whether we want to or not. We may do our best to inform policymakers with results and education based on our research, but marine policy requires value-based judgements based on politics, economics, and human objectivity—all of which are challenging to harmonize into a succinct problem with a clear solution.

Two common bottlenose dolphins (coastal ecotype) traveling along the Santa Barbara, CA shoreline. Image Source: Alexa Kownacki

References:

Dearborn, D. C. and Kark, S. 2010. Motivations for Conserving Urban Biodiversity. Conservation Biology, 24: 432-440. doi:10.1111/j.1523-1739.2009.01328.x

Leslie, H. M. and McLeod, K. L. (2007), Confronting the challenges of implementing marine ecosystem‐based management. Frontiers in Ecology and the Environment, 5: 540-548. doi:10.1890/060093

Munguia, P., and A. F. Ojanguren. 2015. Bridging the gap in marine and terrestrial studies. Ecosphere 6(2):25. http://dx.doi.org/10.1890/ES14-00231.1

Rode, J., Gomez-Baggethun, E., Krause, M., 2015. Motivation crowding by economic payments in conservation policy: a review of the empirical evidence. Ecol. Econ. 117, 270–282 (in this issue).

White, P. S. (2013), Derivation of the Extrinsic Values of Biological Diversity from Its Intrinsic Value and of Both from the First Principles of Evolution. Conservation Biology, 27: 1279-1285. doi:10.1111/cobi.12125

Zacharias, M. 2014. Marine Policy. London: Routledge.

 

Robots are taking over the oceans

By Leila Lemos, PhD Student

In the past few weeks I read an article on the use of aquatic robots in the ocean for research. Since my PhD project uses technology, such as drones and GoPros, to monitor body condition of gray whales and availability of prey along the Oregon coast, I became really interested by the new perspective these robots could provide. Drones produce aerial images while GoPros generate an underwater-scape snapshot. The possible new perspective provided by a robot under the water could be amazing and potentially be used in many different applications.

The article was published on March 21st by The New York Times, and described a new finned robot named “SoFi” or “Sophie”, short for Soft Robotic Fish (Figure 1; The New York Times 2018). The aquatic robot was designed by scientists at the Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence Lab, with the purpose of studying marine life in their natural habitats.

Figure 1: “SoFi”, a robotic fish designed by MIT scientists.
Source: The New York Times 2018.

 

SoFi’s  first swim trial occurred in a coral reef in Fiji, and the footage recorded can be seen in the following video:

 

SoFi can swim at depths up to 18 meters and at speeds up to half-its-body-length a second (average of 23.5 cm/s in a straight path; Katzschmann et al. 2018). Sofi can swim for up to ~40 minutes, as limited by battery time. The robot is also well-equipped (Figure 2). It has a compact buoyancy control mechanism and includes a wide-view video camera, a hydrophone, a battery, environmental sensors, and operating and communication systems. The operating and communication systems allow a diver to issue commands by using a controller that operates through sound waves.

Figure 2: “SoFi” system subcomponents overview.
Source: Katzschmann et al. 2018.

 

The robot designers highlight that while SoFi was swimming, fish didn’t seem to be bothered or get scared by SoFi’s presence. Some fish were seen swimming nearby the robot, suggesting that SoFi has the potential to integrate into the natural underwater environment and therefore record undisturbed behaviors. However, a limitation of this invention is that SoFi needs a diver on scene to control the robot. Therefore, SoFi’s study of marine life without human interference may be compromised until technology develops further.

Another potential impact of SoFi we might be concerned about is noise. Does this device produce noise levels that marine fauna can sense or maybe be stress by? Unfortunately, the answer is yes. Even if fish don’t seem to be bothered by SoFi’s presence, it might bother other animals with hearing sensitivity in the same frequency range of SoFi. Katzschmann and colleagues (2018) explained that they chose a frequency to operate SoFi that would minimally impact marine fauna. They studied the frequencies used by the aquatic animals and, since the hearing ranges of most aquatic species decays significantly above 10 KHz, they selected a frequency above this range (i.e., 36 KHz). However, this high frequency range can be sensed by some species of cetaceans and pinnipeds, but negative affects on these animals will be dependent on the sound amplitude that is produced.

Although not perfect (but what tool is?), SoFi can be seen as a great first step toward a future of underwater robots to assist research efforts.  Battery life, human disturbance, and noise disturbance are limitations, but through thoughtful application and continued innovation this fishy tool can be the start of something great.

The use of aquatic robots, such as SoFi, can help us advance our knowledge in underwater ecosystems. These robots could promote a better understanding of marine life in their natural habitat by studying behaviors, interactions and responses to threats. These robots may offer important new tools in the protection of animals against the effects caused by anthropogenic activities. Additionally, the use of aquatic robots in scientific research may substitute remote operated vehicles and submersibles in some circumstances, such as how drones are substituting for airplanes sometimes, thus providing a less expensive and better-tolerated way of monitoring wildlife.

Through continued multidisciplinary collaboration by robot designers, biologists, meteorologists, and more, innovation will continue allowing data collection with minimal to non-disturbance to the wildlife, providing lower costs and higher safety for the researchers.

It is impressive to see how technology efforts are expanding into the oceans. As drones are conquering our skies today and bringing so much valuable information on wildlife monitoring, I believe that the same will occur in our oceans in a near future, assisting in marine life conservation.

 

 

References:

Katzschmann RK, DelPreto J, MacCurdy R, Rus D. 2018. Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish. Sci. Robot. 3, eaar3449. DOI: 10.1126/scirobotics.aar3449.

The New York Times. 2018. Robotic Fish to Keep a Fishy Eye on the Health of the Oceans. Available at: https://www.nytimes.com/2018/03/21/science/robot-fish.html.

When are seabirds at their breeding colonies?

By Rachael Orben PhD., Research Associate in the Seabird Oceanography Lab and GEMM Lab

When are seabirds at their breeding colonies? 

As the weather warms-up, and spring arrives to the Oregon Coast, seabirds (and seabird biologists) are starting to get busy. One vital task is monitoring annual trends in seabird abundance. Identifying whether seabird populations have increased, declined or remained stable over time is an important ecosystem indicator and a conservation management metric.

Most seabirds arrive at breeding colonies just prior to egg laying, and then leave after their chicks fledge. Within this time seabirds reunite with their mate, defend their nesting territory, build a nest, lay eggs, and feed their chicks. Biologists often count individual birds or nests to estimate population size. This method works well when birds are nesting in easy to observe locations. However, seabirds often nest on inaccessible cliff faces, or in underground burrows. How do we count these difficult to reach and difficult to see species?

This is an important challenge, because burrow nesting seabirds comprise roughly 45% of all seabird species, yet typically little is known about colony specific population trends of these species. 

This slideshow requires JavaScript.

Metrics of abundance

For these cases where counts of seabirds are logistically difficult, the alternative metric of colony attendance becomes important.  Like count data, a meaningful index of abundance can be compared from year to year to follow population changes. For burrow nesting seabirds, this is probably the best method to understanding population dynamics. But, abundance metrics, counts of birds or calls, are complicated and can be influenced by multiple factors, including weather, predators, time of day, time of the breeding cycle, and proportion of non-breeders in a population. (Harding et al. 2005, Cadiou 2008, Mallory et al. 2009).

I conducted a quick search for scientific papers in the Web of Science database and found that although colony attendance is assessed in seabird studies, it is currently nowhere near as “hot” a research topic as tracking the spatial movements of seabirds. This pattern makes sense when you consider the importance of understanding where birds find their food, and that the tracking technology to do this was not available until the early 2000s (Burger & Shaffer 2008). We are still at a point where new species are being tracked as technology improves, and movement patterns are revealing the many facets of seabird ecology.

This slideshow requires JavaScript.

Developing Technology

Technology has also improved for monitoring colony attendance. Instead of sitting at a puffin colony in the wind and rain making repeated counts throughout the day, biologists can now use cameras or even acoustic recorders to record activity (Huffeldt & Merkel 2013, Borker et al. 2015). Then the data processing and counting happen back in the office (with a warm cup of coffee in hand). Through automated processing of sound and image files suddenly seabird colony attendance becomes a “Big Data” problem (see red-legged kittiwake detection with Azure ML Workbench).

Selected images from a trail camera set up to monitor Leach’s storm petrels. Photos: Seabird Oceanography Lab.

There is much we still don’t know about when and why seabirds attend their breeding colonies, and these new tools have much to offer in terms of data quantity. With dense datasets, it becomes possible to tease apart multiple factors that sometimes make interpretation challenging. Colony attendance data has many uses, including testing for anthropogenic effects, understanding seabird responses to weather, and detecting changes in populations over time. If you are reading this consider using cameras or acoustic recorders to monitor colony attendance at your favorite seabird colony!

References

Borker AL, Halbert P, McKown MW, Tershy BR, Croll DA (2015) A comparison of automated and traditional monitoring techniques for marbled murrelets using passive acoustic sensors. Wildlife Society Bulletin 39:813–818

Burger AE, Shaffer SA (2008) Application of Tracking and Data-Logging Technology in Research and Conservation of Seabirds. The Auk 125:253–264

Cadiou B (2008) Attendance off breeders and prospectors reflects the quality off colonies in the Kittiwake Rissa tridactyla. Ibis 141:321–326

Harding AMA, Piatt JF, Byrd GV, Hatch SA, Konyukhov NB, Golubova EU, Williams JC (2005) Variability in Colony Attendance of Crevice- Nesting Horned Puffins: Implications for Population Monitoring (Peterson, Ed.). Journal of Wildlife Management 69:1279–1296

Huffeldt NP, Merkel FR (2013) Remote Time-lapse Photography as a Monitoring Tool for Colonial Breeding Seabirds: A Case Study Using Thick-billed Murres (Uria lomvia). Waterbirds 36:330–341

Mallory ML, Gaston AJ, Forbes MR, Gilchrist HG (2009) Factors Influencing Colony Attendance by Northern Fulmars in the Canadian Arctic. Arctic 62:151–158

 

Some advice on how to navigate the scientific publication maze

Dr. Leigh Torres, Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Oregon State University

Publication of our science in peer-reviewed journals is an extremely important part of our lives as scientists. It’s how we communicate our work, check each other’s work, and improve, develop and grow our scientific fields. So when our manuscript is finally written with great content, we could use some instructions for how to get it through the publication process.  Who gets authorship? How do I respond to reviewers? Who pays for publication costs?

There is some good advice online about manuscript preparation and selecting the right journal. But there is no blueprint for manuscript preparation. That’s because it’s a complicated and variable process to navigate, even when you’ve done it many times. Every paper is different. Every journal has different content and format requirements. And every authorship list is different, with different expectations. As an academic supervisor of many graduate students, and as author on many peer-reviewed papers, I have seen or been a part of more than a few publication blunders, hiccups, road-blocks, and challenges.

Recently I’ve had students puzzle over the nuances of the publication process: “I had no idea that was my role as lead author!”, “How do I tell a reviewer he’s wrong?”, “Who should I recommend as reviewers?” So, I have put together some advice about how to navigate through a few of the more common pitfalls and questions of the scientific publication process. I’m not going to focus on manuscript content, structure, or journal choice – that advice is elsewhere and for authors to evaluate. My intent here is to discuss some of the ‘unwritten’ topics and expectations of the publication process. This guidance and musings are based my 20 years of experience as a scientist trying to navigate the peer-review publication maze myself. I encourage others to add their advice and comments below based on their experiences so that we can engage as a community in an open dialog about these topics, and add transparency to an already difficult and grueling, albeit necessary, process.

Image Credit: Nick at http://www.lab-initio.com/

 

Authorship: Deciding who should – and shouldn’t be – be a co-author on a paper is often a challenging, sensitive, and angst-filled experience. Broad collaboration is so common and often necessary today that we often see very long author lists on papers. It’s best to be inclusive and recognize contribution where it is deserved, but we also don’t want to be handing out co-authorship as a token of appreciation or just to pad someone’s CV or boost their H-index. Indeed, journals don’t want that, and we don’t want to promote that trend. Sometimes it is more appropriate to recognize someone’s contribution in the acknowledgements section.

The best advice I can give about how to determine authorship is advice that was given to me by my graduate advisor, Dr. Andy Read at Duke University: To deserve authorship the person must have contributed to at least three of these five areas: concept development, acquisition of funding, data collection, data analysis, manuscript writing. Of course, this rule is not hard and fast, and thoughtful judgement and discussions are needed. Often someone has contributed to only one or two of these areas, but in such a significant manner that authorship is warranted.

I have also seen situations where someone has contributed only a small, but important, piece of data. What happens then? My gut feeling is this should be an acknowledgment, especially if it’s been published previously, but sometimes the person is recognized as a co-author to ensure inclusion of the data. Is this right? That’s up to you and your supervisor(s), and is often case-specific. But I do think we need to limit authorship-inflation. Some scientists in this situation will gracefully turn down co-authorship and ask only for acknowledgement, while others will demand co-authorship when it’s not fully deserved. This is the authorship jungle we all must navigate, which does not get easier with time or experience. So, it’s best to just accept the complexity and make the best decisions we can based on the science, not necessarily the scientists.

Next, there is the decision of author order, which can be another challenging decision. A student with the largest role in data collection/analysis and writing, will often be the lead author, especially if the paper is also forming a chapter of his/her thesis. But, if lead authorship is not clear (maybe the student’s work focuses on a small part of a much larger project) then its best to discuss authorship order with co-authors sooner rather than later. The lead author should be the person with the largest role in making the study happen, but often a senior scientist, like an academic supervisor, will have established the project and gained the funding support independent of a student’s involvement. This ‘senior scientist’ role is frequently recognized by being listed last in the authorship list – a trend that has developed in the last ~15 years. Or the senior scientists will be the corresponding author. The order of authors in between the first and last author is often grey, muddled and confusing. To sort this order out, I often think about who else had a major role in the project, and list them near the front end, after the lead author. And then after that, it is usually just based on alphabetical order; you can often see this trend when you look at long author lists.

Responsibility as lead author:  The role of a lead author is to ‘herd the cats’. Unless otherwise specified by co-authors/supervisor, this process includes formatting the manuscript as per journal specifications, correspondence with journal editors (letters to editors and response to reviewer comments), correspondence with co-authors, consideration and integration of all co-author comments and edits into the manuscript, manuscript revisions, staying on time with re-submissions to the journal, finding funding for publication costs, and review of final proofs before publication. Phew! Lots to do. To help you through this process, here are some tips:

How to get edits back from co-authors: When you send out the manuscript for edits/comments, give your co-authors a deadline. This deadline should be at least 2 weeks out, but best to give more time if you can. Schedules are so packed these days. And, say in the email something like, ‘If I don’t hear back from you by such and such a date I’ll assume you are happy with the manuscript as is.” This statement often spurs authors to respond.

How to respond to reviewer comments: Always be polite and grateful, even when you completely disagree with the comment or feel the reviewer has not understood your work. Phrases like “we appreciate the feedback”, “we have considered the comment”, and “the reviewers provided thoughtful criticism” are good ways to show appreciation for reviewer comments, even when it’s followed by a ‘but’ statement. When revising a manuscript, you do not need to incorporate all reviewer comments, but you do need to go through each comment one-by-one and say “yes, thanks for this point. We have now done that,” or thoughtfully explain why you have not accepted the reviewer advice.

While receiving negative criticism about your work is hard, I have found that the advice is often right and helpful in the long run. When I first receive reviewer comments back on a manuscript, especially if it is a rejection – yes, this happens, and it sucks – I usually read through it all. Fume a bit. And then put it aside for a week or so. This gives me time to process and think about the feedback. By the time I come back to it, my emotional response has subsided and I can appreciate the critical comments with objectivity.

Journal formatting can be a nightmare: Some editor may read this post and hate me, but my advice is don’t worry too much about formatting a manuscript perfectly to journal specs. During the initial manuscript submission, reviewers will be assessing content, not how well you match the journal’s formatting. So don’t kill yourself at this stage to get everything perfect, although you should be close. Once your paper gets through the first round of reviews, then you should worry about formatting perfectly in the revision.

Who should I recommend as a reviewer? Editors like it when you make their lives easier by recommending appropriate reviewers for your manuscript. Obviously you should not recommend close friends or colleagues. Giving useful, appropriate reviewer suggestions can be challenging. My best advice for this step is to look at the authors you have referenced in the manuscript. Those authors referenced multiple times may have interest in your work, and be related to the subject matter.

Who pays or how to pay for publication? Discuss this issue with your co-authors/supervisor and plan ahead. Most journals have publication fees that often range between $1000 and $2000. Sometimes color figures cost more. And, if you want your paper to be open access, plan on paying > $3000. So, when deciding on a journal, keep these costs in mind if you are on a limited budget. These days I add at least $2000 to almost every project budget to pay for publication costs. Publication is expensive, which is ridiculous considering we as scientists provide the content, review the content for free, and then often have to pay for the papers once published. But that’s the frustrating, unbalanced racket of scientific publication today – a topic for another time, but this article is definitely worth a read, if interested.

So that’s it from me. Please add your advice, feedback, and thoughts below in the comments section.

Sea Otter Management in the U.S.

By Dominique Kone, Masters Student in Marine Resource Management

Since the first official legal protections in 1911, the U.S. has made great strides in recovering sea otter populations. While much of this progress is due to increased emphasis on understanding sea otter behavior, biology, and ecology, there are also several policies that have been just as instrumental in making sea otter conservation efforts successful. Here, I provide a brief overview of the current legal and regulatory policies used to manage sea otters in the U.S. and explain why having a base understanding of these tools can help our lab as we look into the potential reintroduction of sea otters to the Oregon coast.

Sea otter with pup, Prince William Sound, Alaska. Source: Patrick J. Endres

When we talk about sea otter management in the U.S., the two most obvious laws that come to mind are the Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA). In short, the MMPA seeks to prevent the take – including kill, harass, capture, or disturb – or importation of marine mammals and marine mammal products[1]. While the ESA seeks to protect and recover imperiled species – not just marine mammals – and the ecosystems which they depend upon[2]. Both laws are similar in the sense that their primary objectives are to protect and recover at-risk species. However, marine mammals will always be protected under the MMPA, but will only be protected under the ESA if the species is considered threatened or endangered.

On the federal level, the U.S. Fish and Wildlife Service (the Service) is primarily responsible for managing sea otter populations. In the U.S., we manage sea otter populations as five distinct stocks, which differ in their population size and geographic distribution – located in California, Washington, and Alaska state waters (Fig. 1). Because sea otters are divided into these single stocks, management decisions – such as recovery targets or reintroductions – are made on a stock-by-stock basis and are dependent on the stock’s population status. Currently, two of these stocks are federally-listed as threatened under the ESA. Therefore, these two stocks are granted protection under both the ESA and MMPA, while the remaining three stocks are only protected by the MMPA (at the federal level; state management may also apply).

Figure 1. Distribution (approximations of population centers) of sea otter stocks in the U.S. (SW = Southwest Alaskan; SC = Southcentral Alaskan; SE = Southeast Alaskan; WA = Washington, SCA = Southern/Californian)

While the MMPA and ESA are important federal laws, I would be remiss if I didn’t mention the important role that state laws and state agencies have in managing sea otters. According to the MMPA and ESA, if a state develops and maintains a conservation or recovery program with protections consistent with the standards and policies of the MMPA and/or ESA, then the Service may transfer management authority over to the state1,2. However, typically, the Service has opted to manage any stocks listed under the ESA, while states manage all other stocks not listed under the ESA.

Sea otter management in the states of Washington and California is a clear example of this dichotomy. The Washington sea otter stock is not listed under the ESA, and is therefore, managed by the Washington Department of Fish and Wildlife (WDFW), which developed the stock’s recovery plan[3]. In contrast, sea otters along the California coast are listed as threatened under the ESA, and the Service primarily manages the stock’s recovery[4].

Interestingly, sea otter management in Alaska is an exception to this rule. The Southeast and Southcentral sea otter stocks are not listed under the ESA, yet are still managed by the Service. However, the state recognizes sea otters as a species of greatest conservation need in the state’s Wildlife Action Plan, which acts as a recommendation framework for the management and protection of important species and ecosystems[5]. Therefore, even though the state is not the primary management authority for sea otters by law, they still play a role in protecting Alaskan sea otter populations through this action plan.

Table 1. Federal and state listing status of all sea otter stocks within U.S. coastal waters.

States have also implemented their own laws for protecting at-risk species. For instance, while the Washington sea otter stock is not listed under the ESA, it is listed as endangered under Washington state law4. This example raises an important example demonstrating that even if a stock isn’t federally-listed, it may still be protected on the state level, and is always protected under the MMPA. Therefore, if the federal and state listing status do not match, which is the case for most sea otter stocks in the U.S. (Table 1.), the stock still receives management protection at some level.

So why does this matter?

Each of the previously mentioned laws are prohibitive in nature, where the objectives are to prevent and discourage activities which may harm the stock of interest. Yet, agencies may grant exceptions – in the form of permits – for activities, such as scientific research, translocations, commercial/recreational fisheries operations, etc. The permit approval process will oftentimes depend on: (1) the severity or likelihood of that action to harm the species, (2) the species’ federal and state listing status, and (3) the unique approval procedures enforced by the agency. Activities that are perceived to have a high likelihood of harming a species, or involve a species that’s listed under the ESA, will likely require a longer and more arduous approval process.

A sea otter release in Monterey Bay, California. Source: Monterey Bay Aquarium Newsroom.

Understanding these various approval processes is vitally important for our work on the potential reintroduction of sea otters to Oregon because such an effort will no doubt require many permits and a thoughtful permit approval process. Each agency may have their own set of permits, administrative procedures, and approval processes. Therefore, it behooves us to have a clear understanding of these various processes relative to the state, agency, or stock involved. If, hypothetically, a stock is determined as a suitable candidate for reintroduction into Oregon waters, having this understanding will allow us to determine where our research can best inform the effort, what types of information and data are needed to inform the process, and to which agency or stakeholders we must communicate our research.

 

References:

[1] Marine Mammal Protection Act of 1972

[2] Endangered Species Act of 1973

[3] State of Washington. 2004. Sea Otter Recovery Plan. Washington Department of Fish and Wildlife: Wildlife Program

[4] U.S. Fish & Wildlife Service. 2003. Final Revised Recovery Plan for the Southern Sea Otter (Enydra lutris nereis).

[5] Alaska Department of Fish and Game. 2015. Alaska wildlife action plan. Juneau.

 

The Land of Maps and Charts: Geospatial Ecology

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I love maps. I love charts. As a random bit of trivia, there is a difference between a map and a chart. A map is a visual representation of land that may include details like topology, whereas a chart refers to nautical information such as water depth, shoreline, tides, and obstructions.

Map of San Diego, CA, USA. (Source: San Diego Metropolitan Transit System)
Chart of San Diego, CA, USA. (Source: NOAA)

I have an intense affinity for visually displaying information. As a child, my dad traveled constantly, from Barrow, Alaska to Istanbul, Turkey. Immediately upon his return, I would grab our standing globe from the dining room and our stack of atlases from the coffee table. I would sit at the kitchen table, enthralled at the stories of his travels. Yet, a story was only great when I could picture it for myself. (I should remind you, this was the early 1990s, GoogleMaps wasn’t a thing.) Our kitchen table transformed into a scene from Master and Commander—except, instead of nautical charts and compasses, we had an atlas the size of an overgrown toddler and salt and pepper shakers to pinpoint locations. I now had the world at my fingertips. My dad would show me the paths he took from our home to his various destinations and tell me about the topography, the demographics, the population, the terrain type—all attribute features that could be included in common-day geographic information systems (GIS).

Uncle Brian showing Alexa where they were on a map of Maui, Hawaii, USA. (Photo: Susan K. circa 1995)

As I got older, the kitchen table slowly began to resemble what I imagine the set from Master and Commander actually looked like; nautical charts, tide tables, and wind predictions were piled high and the salt and pepper shakers were replaced with pencil marks indicating potential routes for us to travel via sailboat. The two of us were in our element. Surrounded by visual and graphical representations of geographic and spatial information: maps. To put my map-attraction this in even more context, this is a scientist who grew up playing “Take-Off”, a board game that was “designed to teach geography” and involved flying your fleet of planes across a Mercator projection-style mapboard. Now, it’s no wonder that I’m a graduate student in a lab that focuses on the geospatial aspects of ecology.

A precocious 3-year-old Alexa, sitting with the airplane pilot asking him a long list of travel-related questions (and taking his captain’s hat). Photo: Susan K.

So why and how did geospatial ecology became a field—and a predominant one at that? It wasn’t that one day a lightbulb went off and a statistician decided to draw out the results. It was a progression, built upon for thousands of years. There are maps dating back to 2300 B.C. on Babylonian clay tablets (The British Museum), and yet, some of the maps we make today require highly sophisticated technology. Geospatial analysis is dynamic. It’s evolving. Today I’m using ArcGIS software to interpolate mass amounts of publicly-available sea surface temperature satellite data from 1981-2015, which I will overlay with a layer of bottlenose dolphin sightings during the same time period for comparison. Tomorrow, there might be a new version of software that allows me to animate these data. Heck, it might already exist and I’m not aware of it. This growth is the beauty of this field. Geospatial ecology is made for us cartophiles (map-lovers) who study the interdependency of biological systems where location and distance between things matters.

Alexa’s grandmother showing Alexa (a very young cartographer) how to color in the lines. Source: Susan K. circa 1994

In a broader context, geospatial ecology communicates our science to all of you. If I posted a bunch of statistical outputs in text or even table form, your eyes might glaze over…and so might mine. But, if I displayed that same underlying data and results on a beautiful map with color-coded symbology, a legend, a compass rose, and a scale bar, you might have this great “ah-ha!” moment. That is my goal. That is what geospatial ecology is to me. It’s a way to SHOW my science, rather than TELL it.

Would you like to see this over and over again…?

A VERY small glimpse into the enormous amount of data that went into this map. This screenshot gave me one point of temperature data for a single location for a single day…Source: Alexa K.

Or see this once…?

Map made in ArcGIS of Coastal common bottlenose dolphin sightings between 1981-1989 with a layer of average sea surface temperatures interpolated across those same years. A picture really is worth a thousand words…or at least a thousand data points…Source: Alexa K.

For many, maps are visually easy to interpret, allowing quick message communication. Yet, there are many different learning styles. From my personal story, I think it’s relatively obvious that I’m, at least partially, a visual learner. When I was in primary school, I would read the directions thoroughly, but only truly absorb the material once the teacher showed me an example. Set up an experiment? Sure, I’ll read the lab report, but I’m going to refer to the diagrams of the set-up constantly. To this day, I always ask for an example. Teach me a new game? Let’s play the first round and then I’ll pick it up. It’s how I learned to sail. My dad described every part of the sailboat in detail and all I heard was words. Then, my dad showed me how to sail, and it came naturally. It’s only as an adult that I know what “that blue line thingy” is called. Geospatial ecology is how I SEE my research. It makes sense to me. And, hopefully, it makes sense to some of you!

Alexa’s dad teaching her how to sail. (Source: Susan K. circa 2000)
Alexa’s first solo sailboat race in Coronado, San Diego, CA. Notice: Alexa’s dad pushing the bow off the dock and the look on Alexa’s face. (Source: Susan K. circa 2000)
Alexa mapping data using ArcGIS in the Oregon State University Library. (Source: Alexa K circa a few minutes prior to posting).

I strongly believe a meaningful career allows you to highlight your passions and personal strengths. For me, that means photography, all things nautical, the great outdoors, wildlife conservation, and maps/charts.  If I converted that into an equation, I think this is a likely result:

Photography + Nautical + Outdoors + Wildlife Conservation + Maps/Charts = Geospatial Ecology of Marine Megafauna

Or, better yet:

? + ⚓ + ? + ? + ? =  GEMM Lab

This lab was my solution all along. As part of my research on common bottlenose dolphins, I work on a small inflatable boat off the coast of California (nautical ✅, outdoors ✅), photograph their dorsal fin (photography ✅), and communicate my data using informative maps that will hopefully bring positive change to the marine environment (maps/charts ✅, wildlife conservation✅). Geospatial ecology allows me to participate in research that I deeply enjoy and hopefully, will make the world a little bit of a better place. Oh, and make maps.

Alexa in the field, putting all those years of sailing and chart-reading to use! (Source: Leila L.)

 

Living the Dream – life as a marine mammal observer

By Florence Sullivan, MSc.

Living the dream as a marine mammal observer onboard the R/V Bell Shimada Photo credit: Dave Jacobsen

I first learned that “Marine Mammal Observer” was a legitimate career field during the summer after my junior year at the University of Washington.  I had the good fortune to volunteer for the BASIS fisheries-oceanography survey onboard the R/V Oscar Dyson where I met two wonderful bird observers who taught me how to identify various pelagic bird species and clued me in to just how diverse the marine science job market can be. After the cruise, younger Florence went off with an expanded world view and a small dream that maybe someday she could go out to sea and survey for marine mammals on a regular basis (and get paid for it?!).  Eight years later, I am happy to report that I have just spent the last week as the marine mammal observer on the North California Current Survey on the Dyson’s sister ship, the R/V Bell M. Shimada.  While we may not have seen as many marine mammals as I would have liked, the experience has still been everything younger Florence hoped it would be.

Finally leaving port a few days behind schedule due to stormy weather! photo credit: Florence Sullivan

If you’ve ever wondered why the scientists in your life may refer to summer as “field work season”, it’s because attempting to do research outside in the winter is an exercise in frustration, troubleshooting, and flexibility. Case in point; this cruise was supposed to sail away from port on the 24th of February, but did not end up leaving until the 27th due to bad weather.  This weather delay meant that we had to cut some oceanographic stations we would like to have sampled, and even when we made it out of the harbor, the rough weather made it impossible to sample some of the stations we still had left on our map.  That being said, we still got a lot of good work done!

The original station map. The warm colors are the west coast of the US, the cold colors are the ocean, and the black dots are planned survey stations

The oceanographers were able to conduct CTD casts at most planned stations, as well as sample the water column with a vertical zooplankton net, a HAB net (for looking for the organisms that cause Harmful Algal Blooms),  and a Bongo Net (a net that specializes in getting horizontal samples of the water column).  When it wasn’t too windy, they were also able to sample with the Manta net (a net specialized for surface sampling – it looks like a manta ray’s mouth) and at certain near-shore stations they did manage to get some bottom beam trawls in to look at the benthic community of fishes and invertebrates.  All this was done while dodging multitudes of crab pots and storm fronts.  The NOAA corps officers who drive the boat, and the deck crew who handle all the equipment deployments and retrievals really did their utmost to make sure we were able to work.

Stormy seas make for difficult sampling conditions! photo credit: Florence Sullivan

For my part, I spent the hours between stations searching the wind-tossed waves for any sign of marine mammals. Over the course of the week, I saw a few Northern fur seals, half a dozen gray whales, and a couple of unidentified large cetaceans.  When you think about the productivity of the North Pacific Ecosystem this may not seem like very much.  But remember, it is late winter, and I do not have x-ray vision to see through the waves.  It is likely that I missed a number of animals simply because the swell was too large, and when we calculate our “detection probability” these weather factors will be taken into account. In addition, many of our local marine mammals are migrators who might be in warmer climates, or are off chasing different food sources at the moment.  In ecology, when you want to know how a population of animals is distributed across a land- or sea-scape, it is just as important to understand where the animals are NOT as where they ARE. So all of this “empty” water was very important to survey simply because it helps us refine our understanding of where animals don’t want to be.  When we know where animals AREN’T we can ask better questions about why they occur where they ARE.

Black Footed Albatross soars near the boat. Photo credit: Florence Sullivan

Notable species of the week aside from the marine mammals include Laysan and Black Footed Albatrosses, a host of Vellella vellella (sailor by the wind hydroid colonies) and the perennial favorite of oceanographers; the shrinking Styrofoam cup.  (See pictures)

We sent these styrofoam cups down to 1800 meters depth. The pressure at those depths causes all the air to escape from the styrofoam, and it shrinks! This is a favorite activity of oceanographers to demonstrate the effects on increased pressure!

These sorts of interdisciplinary cruises are quite fun and informative to participate in because we can build a better picture of the ecosystem as a whole when we use a multitude of methods to explore it.  This strength of cooperation makes me proud to add my little piece to the puzzle. As I move forward in life, whether I get to be the marine mammal observer, the oceanographer, or perhaps an educator, I will always be glad to contribute to collaborative research.

 

How important are foundational, novel and review papers?

By Leila Lemos, PhD Student

As I wrote in my last blog post, I am in the process of studying for my preliminary exams that will happen in late March (written exams) and late April (oral exam).

My committee members provided me with reading lists of material they thought was important for me to know in order for me to become a PhD candidate. This will serve as the basis for my dissertation research, and provides the framework for how my contribution will advance the field. In the last month, I have been reading many, many articles, book chapters, theses, etc. to build this foundation.

One of the first steps was to organize all of the readings for my prelims on
a big board that would help me visualize what has been done and
what is still missing for each of the committee members

 

The material I am reading is a mixture of foundational and novel material, which are equally important. Foundational articles tell us about the origin of a specific field or theme, and help me to understand fundamental concepts and theories. It is really interesting to see what the pioneer researchers in the field first thought and how they tested their hypotheses many years ago. It is also remarkable to read novel papers and see how these foundational ideas have evolved and developed into new hypotheses, leading to new studies and experiments which push the boundaries of what we already know.

Review papers can also give a sense of this timeline by compiling studies on a particular topic. By assembling all of the available findings in my field, it becomes clear what questions remain unanswered, justifying the goals of my research, and establishing the project’s theoretical and methodological framework.

In my PhD project we are attempting to address some of the unanswered questions related to stress responses in baleen whales. Reading about other studies, their results, and the diverse techniques that have been applied to other taxa makes me really excited about what I can still incorporate in the project.

Source: http://binapatel.me/2017/05/25/literature-review-citation-
tracing-concept-saturation-results-mind-mapping/

 

At the end of my PhD, if we are able to answer our proposed questions, we will have contributed to advancing the field of knowledge, and we will be able to apply our results to the conservation and management of baleen whales in nearshore coastal ecosystems.

The more I read the content proposed by my committee members, the more I find connections between my PhD project, its aims, and the title I proposed for myself as being a “Conservation Physiologist”. Being a Conservation Physiologist is exactly what I want to be, during my PhD, and in the future.

 

 

 

Do I have the time?

By Rachael Orben PhD., Research Associate in the Seabird Oceanography Lab and GEMM Lab

So, there is something called work-life balance. I am still trying to find mine.

As an undergraduate it was easy. I sailed a lot and my grades suffered. In hindsight that was the best choice I could have made.  I learned to sail, spent time on the water and in the end, I think I turned out ok. Following that I spent ~7 years working as a field technician in remote, stunningly beautiful places, with lots of seabirds. I would sum these years up as having very little life balance with lots of experience.

From there I started grad school. At age 29, I relearned how to live in a town and bought my first car. I spent 5.5 years in grad school, but 14 months of this time were spent in the field (not all for my PhD research). During the last phase of my PhD I was often too mentally exhausted on the weekends to even consider trying to write or to analyze data.  I tracked my working hours with RescueTime and I found that after a weekend at play my Monday at work was often very focused and productive. Then through the week my productivity would drop.

That seemed promising. Playing more equaled more efficient work hours. The tales are true.

And then I started post doc life.  A new town, more rain, and more projects that come with deadlines. For the most part, my attempts for a work-life balance went out the window as I adjusted to the new locale. I still do field work and within that experience I can catch my academic breath – while working just as hard.

Evening on High Bluffs, St. George AK

One can read ad nauseam about struggles academic scientists have balancing work and life. There is lots of sage advice out there (e.g. here) and dismay with a system that asks so much of a person (here). As I continue on this career path I know that demands on my time will only become more and more frequent. There is a part of me that likes the idea of curling up on a rainy Saturday morning and crunching out some data analysis even though in the long run this probably isn’t a good approach. And maybe that is the problem – I love most of what I do!

For now, I am still learning. What do I focus on? What do I spend my time on? How do I meet deadlines without a dose of panic? How do I restrain my growing to-do list?

**In order to make sure that I didn’t over or under achieve on this blog post I asked the internet ‘how long should a blog post be?’  It turns out the answers are varied.  But somewhere between 700 and 1,600 words is a good target. I made it to 488.  Today there is a dog that wants a walk, a talk to be written, a manuscript to revise, dinner to cook…

Walking along the Oregon Coast.

 

Grad School: Nothing Lasts, Nothing is Perfect, Nothing is Finished.

By Florence Sullivan, MSc

Last week, I attended the Seattle Garden Show with my mom and a friend of hers.  We particularly enjoyed the West Seattle Nursery’s entry that was intended to reflect on the idea that “Nothing Lasts, Nothing is Perfect, and Nothing is Finished.”  My mom and her friend proceeded to articulate a feeling I think many of us have struggled with.  Not quite “imposter syndrome” because the feeling is not limited to your job, it pervades the whole human experience. Rather, we talked about the idea that as a child, you have an impression that adults have everything figured out in life, but as you grow older, you realize that everyone is just muddling along as best they can. The most important take-away for me in listening to two late-middle-age women have this conversation was: the feeling of being unprepared never goes away, but you have to tackle life head on anyways.

When I finally finished my master’s degree, a similar feeling of ‘what do I do now?!’ caught me by surprise. I was fully cognizant of all the hard work I had done, but my mentally and emotionally exhausted brain could no longer compute how this accomplishment translated to real world skills. I could no longer see the whole of my work, I could only stress out about the bits that I felt were weak or could have been done better.  I was lost in that insidious trap of thinking that because I felt like I still had so much to learn, that my peers had their lives and their research figured out so much more effectively than my own. Time and distance, counseling, and listening to many conversations like my mom’s, helped me to break away from this trap and remember that “Nothing Lasts [Grad school took 3 years], Nothing is Perfect [My work does not need to be perfect in order to matter], and Nothing is Finished [I will never be done learning]”.

Before I moved away from the lab, I was asked to compile my institutional knowledge into a “How to” guide for new GEMM Lab members.  It really does cover a wide range of topics.  There are tips about computer log-ons, where to find certain administrative paperwork and when to fill it out, how to make a post on this blog, protocols for photo-ID work and other routine lab tasks, and even some favorite recipes for lab meetings. Setting this guide up was another helpful step on my journey to remember how much I have learned in the last 3 years, and how much I am capable of contributing to a group.

Team Ro-buff-stus in August 2017.
Team Ro-buff-stus in 2016
Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful “buff” scarves you can see us wearing on most days. 2015

I’m now actively job hunting, and while this has been stressful, it has also been strangely encouraging as I reframe the variety of skills I picked up in grad school and realize just how much is hidden in that new line on my resume. There are so many common application bullet points that I can answer with confidence. Yes! I have teaching and leadership experience because I trained and supervised 3 generations of interns in the gray whale foraging ecology project. Yes! I have data processing and analysis experience through my classwork and my successfully defended thesis.  Yes! I have scientific writing experience – one of my thesis chapters has been accepted for publication in the Journal of Wildlife Management.  With every Yes! my confidence grows, and I get more excited to start the newest chapter in my life.  I recognize that many of my applications will be rejected, because there are many other qualified applicants out there, but I will keep trying, because Nothing lasts [The job search is temporary], Nothing is Perfect [I do not need to be perfect to get the job], and Nothing is Finished [There will always be room for me to grow].

Moving Day! The GEMM Lab helps Kelly and Florence pack their house.

I am incredibly thankful to everyone who supported my journey.  My advisor Leigh, has been a fabulous mentor in the best sense of the word from day one.  My lab mates Amanda, Rachael, Dawn, Solene, Leila, Erin, Alexa, and Dom have been excellent confidantes, cheerleaders, and sources of inspiration.  My husband, Kelly made sure that I always had a cup of tea, a warm meal, and a hug to keep me going. My interns, Sarah, Cricket, Justin, Kelli, Catherine, Cathryn, Maggie, Nathan and Quince made my field work both possible and enjoyable.  My family and friends at home kept me grounded even at a distance, and my Corvallis contra dancing community reminds me to dance my cares away, because nothing lasts, nothing is perfect, and nothing is finished.