An insight into what Marine Mammal Observing is really like!

By Amanda Holdman

It’s August of 2015. That means I have exactly 2.5 months left until my field season and data collection for my masters comes to a close. At the end of October, I will have collected exactly 2 years of visual data on marine mammal distributions off of the coast of Newport, Oregon.

This is a bittersweet moment for me. Currently, I am on a 7 hour flight to Scotland to do some initial data analysis on my collected observations, with the help of a workshop offered by the University of St. Andrews. My first time abroad has me pretty restless with excitement on the plane, but with a 9 hour time change, some good rest will be key to being successful at the workshop. As I try to close my eyes, and picture what the next two weeks of what I like to call “Intensive Distance Sampling Summer School” will be like, the stranger next to me inevitably begins to make small talk, beginning with

“So what do you do?”

I usually tend to answer this question in two different ways. When I’m in my science community, I have no hesitation giving my 3 minute elevator speech on what I have been researching for the past year. However, when I’m making small talk with anyone I tend to just say

“I’m a master’s student studying marine mammals”

And that’s about all you need to say to get everyone’s attention around you! With a little more detail, I explain that I run transects to collect visual observation data of marine mammals to assist with understanding their patterns in distribution and habitat use. This explanation is always followed up with:

“Man, you’ve got the coolest job ever! What’s it like doing this all the time?”

Again most of the time I get this question, I’m usually conversing with people visiting the west coast hoping to see a large gray whale on vacation; or  young children who haven’t yet figured out that marine biology isn’t just about dolphins and pretty coral reefs – but it’s still good to inspire them! Just last week even, I ran into someone on the beach that told me his daughter thinks I’m a rock star for teaching her that you can research the sounds that whales, dolphins, and seals make. (His daughter attended Marine Science Day back in April, and I showed her some recordings of sounds – but I’ll carry this compliment with me for a long time)

But when people ask me how awesome my job is, I tend to keep the morale up and I usually answer

“yep, it’s pretty awesome. I love it! ”

But to be honest, sometimes… it isn’t.

For me, there are four components that equate to a great day of fieldwork: ocean conditions, marine mammals, the boat itself, and equipment (hydrophones, GPS, CTD, camera, etc.)

So in reality…

“The flow of research season goes a lot like this: whales are present, but ocean is impossible; or ocean is calm but the whales are gone; or both whales and ocean are good but the boat breaks down; or everything is working but the rain last night brought in some fog and ruined the visibility” (From Hawaii’s Humpbacks: Unveiling the Mysteries)

AND EVEN on the rare chance that everything goes right – observing marine mammals is hard and uncomfortable – 14 hours of standing with back pain, squinting into the sun until you see one part of the water that looks a little different than the others. I mean really there isn’t much on earth that’s more enormous than the ocean.

This sounds like a lot of negativity, but I am in Scotland currently to resolve some of these minor setbacks we encountered during field collection. Using a statistics program called DISTANCE, we can take into account environmental conditions, sea state, observer bias, etc. When we combine all of these factors together we create a detection function or a ratio of the animals we saw, compared to those we missed. Eventually we end up with an abundance estimate of how many animals are in our study area.

Analyzing the results of my observations this week has provided me with the realization that my time on a boat is coming to an end. In my two years of fieldwork collection, marine mammal observing has molded me into the type of person that has what it takes to do this kind of research: dedicated, tolerant to pain, boredom, and frustration, and most importantly passionate about what I am doing.

Passion is definitely a prerequisite for the life of a GEMM student. Graduate school gives you the chance to be reflective and the time to carefully wade through information. I’ve always had a strong desire to learn, and when I get to combine that with my personal interests, it turns out graduate school can be quite the rewarding initiative.

It’s easy to be discouraged sometimes, especially in an intense and competitive environment like scientific research. I can assure you though, even on our unlucky days, when we’ve swallowed all of the truths about the difficulties of what we do and we’re frustrated enough to give up, our luck turns – usually right when we need it to.

I think the BBC Zoologist, Mark Carwardine, knows just how I feel in saying, “There are few things more rewarding than seeing the worlds’s largest animal in its natural habitat!

Thanks for reading!

Following Tracks: A Summer of Research in Quantitative Ecology

**GUEST POST** written by Irina Tolkova from the University of Washington.

R, a programming language and software for statistical analysis, gives me an error message.

I mull it over. Revise my code. Run it again.

Hey, look! Two error messages.

I’m Irina, and I’m working on summer research in quantitative ecology with Dr. Leigh Torres in the GEMM Lab. Ironically, as much as I’m interested in the environment and the life inhabiting it, my background is actually in applied math, and a bit in computer science.

vl-dsc04212

(Also, my background is the sand dunes of Florence, OR, which are downright amazing.)

When I mention this in the context of marine research, I usually get a surprised look. But from firsthand experience, the mindsets and skills developed in those areas can actually be very useful for ecology. This is partly because both math and computer science develop a problem-solving approach that can apply to many interdisciplinary contexts, and partly because ecology itself is becoming increasingly influenced by technology.

Personally, I’m fascinated by the advancement in environmentally-oriented sensors and trackers, and admire the inventors’ cleverness in the way they extract useful information. I’ve heard about projects with unmanned ocean gliders that fly through the water, taking conductivity, temperature, depth measurements (Seaglider project by APL at the University of Washington), which can be used for oceanographic mapping. Arrays of hydrophones along the coast detect and recognize marine mammals through bioacoustics (OSU Animal Bioacoustics Lab), allowing for analysis of their population distributions and potentially movement. In the GEMM lab, I learned about light and small GPS loggers, which can be put on wildlife to learn about their movement, and even smaller lighter ones that determine the animal’s general position using the time of sunset and sunrise. Finally, scientists even made artificial nest mounds which hid a scale for recording the weight of breeding birds — looking at the data, I could see a distinctive sawtooth pattern, since the birds lost weight as they incubated the egg, and gained weight after coming home from a foraging trip…

On the whole, I’m really hopeful for the ecological opportunities opened up by technology. But the information coming in from sensors can be both a blessing and a curse, because — unlike manually collected data — the sample sizes tend to be massive. For statistical analysis, this is great! For actually working with the data… more difficult. For my project, this trade-off shows as R and Excel crash over the hundreds of thousands of points in my dataset… what dataset, you might ask? Albatross GPS tracking data.

In 2011, 2012, and 2013, a group of scientists (including Dr. Leigh!) tagged grey-headed albatrosses at Campbell Island, New Zealand, with small GPS loggers. This was done in the summer months, when the birds were breeding, so the GPS tracks represent the birds’ flights as they incubated and raised their chicks. A cool fact about albatrosses: they only raise one chick at a time! As a result, the survival of the population is very dependent on chick survival, which means that the health of the albatrosses during the breeding season, and in part their ability to find food, is critical for the population’s sustainability. So, my research question is: what environmental variables determine where these albatrosses choose to forage?

The project naturally breaks up into two main parts.

  • How can we quantify this “foraging effort” over a trajectory?
  • What is the statistical relationship between this “foraging effort metric” and environmental variables?

Luckily, R is pretty good for both data manipulation and statistical analysis, and that’s what I’m working on now. I’ve just about finished part (1), and will be moving on to part (2) in the coming week. For a start, here are some color-coded plots showing two different ways of measuring the “foraging value” over one GPS track:

track89518

Most of my time goes into writing code, and, of course, debugging. This might sound a bit dull, but the anticipation of new results, graphs, and questions is definitely worth it. Occasionally, that anticipation is met with a result or plot that I wasn’t quite expecting. For example, I was recently attempting to draw the predicted spatial distribution of an albatross population. I fixed some bugs. The code ran. A plot window opened up. And showed this:

pretty_circles

I stared at my laptop for a moment, closed it, and got some hot tea from the lab’s electronic kettle, all the while wondering how R came up with this abstract art.

All in all, while I spend most of my time programming, my motivation comes from the wildlife I hope to work for. And as any other ecologist, I love being out there on the Oregon coast, with the sun, the rain, sand, waves, valleys and mountains, cliff swallows and grey whales, and the rest of our fantastic wild outdoors.

SONY DSC

Irina5

Southern Sunshine Meets Oregon Wind: Interning with the GEMM Lab!

**GUEST POST**written by Cheyenne Coleman of Savannah State University

My first journey to the west coast, was spent on a six hour flight to Portland, Oregon in anticipation of my upcoming summer internship with the Geospatial Ecology and Marine Megafuana lab (GEMM Lab) at the Hatfield Marine Science Center (HMSC). I had never before been to the west coast, but luckily for me I did not have to make this long journey alone; my friend, Kamiliya Daniels, was also doing an internship at HMSC. After a long bus ride to Corvallis, Kamiliya and I, were warmly greeted by one of my GEMM lab members, Amanda Holdman. With her, was honorary GEMM lab member and Amanda’s dog, Boiler, who spent the greater part of the drive to Newport sleeping on my lap while I spent the drive asking Amanda several series of questions,

“Are there bears in these woods?”

“What do the dorms look like? How do I get around town? I hear it’s a small town, is there at least a Walmart?”

But without any answer to my curiosity, all of these questions were left with one reply:

“I’ll let you see for yourself.”

And then just as Amanda proposed, I did exactly that.

My name is Cheyenne and I am from Savannah State University in Georgia interning with LMRCSC (Living Marine Resources Cooperative Science Center) in Newport, Oregon. My expectations of the Oregon coast and the reality was vastly different than what I had pictured. I imagined the entire West Coast would match a California summer; Sunny and hot.

But on the contrary, upon arrival to Newport, I learned, it doesn’t. It is windy and chilly and hardly ever above 70 degrees. Thinking an Oregon summer would match a California summer, in my suitcase I possessed only three small sweaters and an abundant supply of shorts and tank tops. Needless, to say I was quickly off to buy an Oregon Coast sweatshirt that would double as warmth and a souvenir. Upon first entering Newport, I was mostly shocked at how small the town felt, and I noticed every structure was made of wood, and coming from Georgia this was strange to me. In Georgia, everything is made of bricks and cement. The dorms on first glance reminded me of summer camp for adults: slightly dated with bunk bed sleeping arrangements. Yikes!

However, my worries that come along with moving to a new place, were quickly diminished when I was welcomed to the GEMM lab; Florence greeted with a warm cup of tea, I was introduced to everyone who worked at HMSC, and even given my very own desk in the GEMM lab. After a day of transitions, and a much needed good night’s rest, I was introduced to my project on California Sea Lions (Zalophus californianus).

If you’ve been following along with all of the latest posts from GEMM lab students, you might think the lives of spatial ecologists revolve around glamorous fieldwork. We’ve got Amanda eavesdropping on porpoises, Florence surveying for foraging gray whales, and Leigh playing hide and seek with seabirds down in Yachats. I, however, am admittedly not spending my summer in the field this year and am learning that there is more to being a scientist than picturesque moments with charismatic study species in beautiful locations.

Prior to entering the GEMM lab, I had limited experience in computing and data analysis and spent my prior summer’s doing fieldwork on invertebrates, usually bagging sediment and collecting water samples. This internship was a new and unique opportunity for me to learn the next step of the scientific process. While I had always wondered, “What happens after data collection?” I was not given the experience to find out.  I quickly learned, that this includes a lot of sorting, categorizing, and modeling, all of which are very time consuming.

By using satellite tracking information of California sea lions collected by the Oregon Department of Fish and Wildlife (ODFW) from 2005 and 2007, I am able to measure movements and habitat use of California sea lions. By analyzing their routes between their initial and final locations, we can study their distributions patterns.

To some people, sitting at a computer doing analysis may not seem as glamorous as working in the field. Some people might question why someone would chose to spend their career in front of a computer screen. But my internship this summer, really showed me the value of having experience working at all stages of the scientific process. Seeing all of my efforts in processing, sorting, and categorizing come together to create an end result really enhanced my love for science. By connecting the questions to the answers, and making contributions to the scientific community, I feel rewarded for my hard work.

My internship has come to an end, and given my initial hesitations, I’ve grown accustomed to Newport and the GEMM lab. I enjoy sitting at my desk running through a wild assortment of data and hearing the wonderful ding of the teapot. In the last days of my internship, I was able to escape my computer screen to assist Florence in data collection on beautiful gray whale surveys. Last Thursday, a lab meeting was held and my lab mates and I were able to update each other on our research. We shared ideas on how to enhance everyone’s project, and who might be able to answer questions we were struggling with in our own data sets. As my internship comes to a close, I have gained more knowledge and real life skill then I would ever hope to gain just through courses at Savannah State. I learned new software programs like R Statistical Package and sharpened my own skills in ArcGIS. I gained the experience of collaborating with a lab, and understanding how powerful working with your peers and colleagues can be. Gaining this much experience has, without a doubt, given me an edge in the competitive field I will enter after graduation. I have made connections, hopefully life long, with the nicest people; I know that in the future, which ever path I may choose, I’ll always be a part of the GEMM lab.