Should scientists engage in advocacy?

By Dominique Kone, Masters Student in Marine Resource Management

Should scientists engage in advocacy? This question is one of the most debated topics in conservation and natural resource management. Some experts firmly oppose researchers advocating for policy decisions because such actions potentially threaten the credibility of their science. While others argue that with environmental issues becoming more complex, society would benefit from hearing scientists’ opinions and preferences on proposed actions. While both arguments are valid, we must recognize the answer to this question may never be a universal yes or no. As an early-career scientist, I’d like to share some of my observations and thoughts on this topic, and help continue this dialogue on the appropriateness of scientists exercising advocacy.

Policymakers are tasked with making decisions that determine how species and natural resources are managed, and subsequently affect and impact society. Scientists commonly play an integral role in these policy decisions, by providing policymakers with reliable and accurate information so they can make better-informed decisions. Examples include using stock assessments to set fishing limits, incorporating the regeneration capacity of forests into the timing of timber harvest, or considering the distribution of blue whales in permitting seafloor mining projects. Importantly, informing policy with science is very different from scientists advocating on policy issues. To understand these nuances, we must first define these terms.

A scientist considering engaging in policy advocacy. Source: Karen Brey.

According to Merriam-Webster, informing means “to communicate knowledge to” or “to give information to an authority”. In contrast, advocating means “to support or argue for (a cause, policy, etc.)” (Merriam-Webster 2019). People can inform others by providing information without necessarily advocating for a cause or policy. For many researchers, providing credible science to inform policy decisions is the gold standard. We, as a society, do not take issue with researchers supplying policymakers with reliable information. Rather, pushback arises when researchers step out of their role as informants and attempt to influence or sway policymakers to decide in a particular manner by speaking to values. This is advocacy.

Dr. Robert Lackey is a fisheries & political scientist, and one of the prominent voices on this issue. In his popular 2007 article, he explains that when scientists inform policy while also advocating, a conflict of interest is created (Lackey 2007). To an outsider, it can be difficult to distinguish values from scientific evidence when researchers engage in policy discussions. Are they engaging in these discussions to provide reliable information as an honest scientist, or are they advocating for decisions or policies based on their personal preferences? As a scientist, I like to believe most scientists – in natural resource management and conservation – do not engage in policy decisions for their own benefit, and they truly want to see our resources managed in a responsible and sustainable manner. Yet, I also recognize this belief doesn’t negate the fact that when researchers engage in policy discussions, they could advocate for their personal preferences – whether they do so consciously or subconsciously – which makes identifying these conflicts of interest particularly challenging.

Examples of actions scientists take in conducting and reporting research. Actions on the left represent actions of policy advocacy, those on the right do not, and the center is maybe. This graphic was adapted from a policy advocacy graphic from Scott et al. 2007. Source: Jamie Keyes.

It seems much of the unease with researchers exercising advocacy has to do with a lack in transparency about which role the researcher chooses to play during those policy debates. A simple remedy to this dilemma – as Lackey suggested in his paper – could be to encourage scientists to be completely transparent when they are about to inform versus advocate (Lackey 2007). Yet, for this suggestion to work, it would require complete trust in scientists to (1) verbalize and make known whether they’re informing or advocating, and (2) when they are informing, to provide credible and unbiased information. I’ve only witnessed a few scientists do this without ensuing some skepticism, which unfortunately highlights issues around an emerging mistrust of researchers to provide policy-neutral science. This mistrust threatens the important role scientists have played in policy decisions and the relationships between scientists and policymakers.

While much of this discussion has been focused on how researchers and their science are received by policymakers, researchers engaging in advocacy are also concerned with how they are perceived by their peers within the scientific community. When I ask more-senior researchers about their concerns with engaging in advocacy, losing scientific credibility is typically at or near the top of their lists. Many of them fear that once you start advocating for a position or policy decision (e.g. protected areas, carbon emission reduction, etc.), you become known for that one cause, which opens you up to questions and suspicions on your ability to provide unbiased and objective science. Once your credibility as a scientist comes into question, it could hinder your career.

How it sometimes feels when researchers conduct policy-relevant science. Source: Justin DeFreitas.

Conservation scientists are faced with a unique dilemma. They value both biodiversity conservation and scientific credibility. Yet, in some cases, risk or potential harm to a species or ecosystem may outweigh concerns over damage to their credibility, and therefore, may choose to engage in advocacy to protect that species or ecosystem (Horton 2015). Horton’s explanation raises an important point that researchers taking a hands-off approach to advocacy may not always be warranted, and that a researcher’s decision to engage in advocacy will heavily depend on the issue at hand and the repercussions if the researcher does not advocate their policy preferences. Climate change is a great example, where climate scientists are advocating for the use of their science, recognizing the alternative could mean continued inaction on carbon emission reduction and mitigation. [Note: this is called science advocacy, which is slightly different than advocating personal preferences, but this example helps demonstrate my point.]

To revisit the question – should scientists engage in advocacy? Honestly, I don’t have a clear answer, because there is no clear answer. This topic is one that has so many dimensions beyond the few I mentioned in this blog post. In my opinion, I don’t think researchers should have an always yes or always no stance on advocacy. Nor do I think every researcher needs to agree on this topic. A researcher’s decision to engage in advocacy will all depend on context. When faced with this decision, it might be useful to ask yourself the following questions: (1) How much do policymakers trust me? (2) How will my peers perceive me if I choose to engage? (3) Could I lose scientific credibility if I do engage? And (4) What’s at stake if I don’t make my preferences known? Hopefully, the answers to these sub-questions will help you decide whether you should advocate.

References:

Horton, C. C., Peterson, T. R., Banerjee, P., and M. J. Peterson. 2015. Credibility and advocacy in conservation science. Conservation Biology. 30(1): 23-32.

Lackey, R. T. 2007. Science, Scientists, and Policy Advocacy. Conservation Biology. 21(1): 12-17.

Scott et al. (2007). Policy advocacy in science: prevalence, perspectives, and implications for conservation biologists. Conservation Biology. 21(1): 29-35.

Merriam-Webster. 2019. Retrieved from < https://www.merriam-webster.com/ >

Over the Ocean and Under the Bridges: STEM Cruise on the R/V Oceanus

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

From September 22nd through 30th, the GEMM Lab participated in a STEM research cruise aboard the R/V Oceanus, Oregon State University’s (OSU) largest research vessel, which served as a fully-functioning, floating, research laboratory and field station. The STEM cruise focused on integrating science, technology, engineering and mathematics (STEM) into hands-on teaching experiences alongside professionals in the marine sciences. The official science crew consisted of high school teachers and students, community college students, and Oregon State University graduate students and professors. As with a usual research cruise, there was ample set-up, data collection, data entry, experimentation, successes, and failures. And because everyone in the science party actively participated in the research process, everyone also experienced these successes, failures, and moments of inspiration.

The science party enjoying the sunset from the aft deck with the Astoria-Megler bridge in the background. (Image source: Alexa Kownacki)

Dr. Leigh Torres, Dr. Rachael Orben, and I were all primarily stationed on flybridge—one deck above the bridge—fully exposed to the elements, at the highest possible location on the ship for best viewing. We scanned the seas in hopes of spotting a blow, a splash, or any sign of a marine mammal or seabird. Beside us, students and teachers donned binoculars and positioned themselves around the mast, with Leigh and I taking a 90-degree swath from the mast—either to starboard or to port. For those who had not been part of marine mammal observations previously, it was a crash course into the peaks and troughs—of both the waves and of the sightings. We emphasized the importance of absence data: knowledge of what is not “there” is equally as important as what is. Fortunately, Leigh chose a course that proved to have surprisingly excellent environmental conditions and amazing sightings. Therefore, we collected a large amount of presence data: data collected when marine mammals or seabirds are present.

High school student, Chris Quashnick Holloway, records a seabird sighting for observer, Dr. Rachael Orben. (Image source: Alexa Kownacki).

When someone sighted a whale that surfaced regularly, we assessed the conditions: the sea state, the animal’s behavior, the wind conditions, etc. If we deemed them as “good to fly”, our licensed drone pilot and Orange Coast Community College student, Jason, prepared his Phantom 4 drone. While he and Leigh set up drone operations, I and the other science team members maintained a visual on the whale and stayed in constant communication with the bridge via radio. When the drone was ready, and the bridge gave the “all clear”, Jason launched his drone from the aft deck. Then, someone tossed an unassuming, meter-long, wood plank overboard—keeping it attached to the ship with a line. This wood board serves as a calibration tool; the drone flies over it at varying heights as determined by its built-in altimeter. Later, we analyze how many pixels one meter occupied at different heights and can thereby determine the body length of the whale from still images by converting pixel length to a metric unit.

High school student, Alishia Keller, uses binoculars to observe a whale, while PhD student, Alexa Kownacki, radios updates on the whale’s location to the bridge and the aft deck. (Image source: Tracy Crews)

Finally, when the drone is calibrated, I radio the most recent location of our animal. For example, “Blow at 9 o’clock, 250 meters away”. Then, the bridge and I constantly adjust the ship’s speed and location. If the whale “flukes” (dives and exposes the ventral side of its tail), and later resurfaced 500 meters away at our 10 o’clock, I might radio to the bridge to, “turn 60 degrees to port and increase speed to 5 knots”. (See the Hidden Math Lesson below). Jason then positions the drone over the whale, adjusting the camera angle as necessary, and recording high-quality video footage for later analysis. The aerial viewpoint provides major advantages. Whales usually expose about 10 percent of their body above the water’s surface. However, with an aerial vantage point, we can see more of the whale and its surroundings. From here, we can observe behaviors that are otherwise obscured (Torres et al. 2018), and record footage that to help quantify body condition (i.e. lengths and girths). Prior to the batteries running low, Jason returns the drone back to the aft deck, the vessel comes to an idle, and Leigh catches the drone. Throughout these operations, those of us on the flybridge photograph flukes for identification and document any behaviors we observe. Later, we match the whale we sighted to the whale that the drone flew over, and then to prior sightings of this same individual—adding information like body condition or the presence of a calf. I like to think of it as whale detective work. Moreover, it is a team effort; everyone has a critical role in the mission. When it’s all said and done, this noninvasive approach provides life history context to the health and behaviors of the animal.

Drone pilot, Jason Miranda, flying his drone using his handheld ground station on the aft deck. (Photo source: Tracy Crews)

Hidden Math Lesson: The location of 10 o’clock and 60 degrees to port refer to the exact same direction. The bow of the ship is our 12 o’clock with the stern at our 6 o’clock; you always orient yourself in this manner when giving directions. The same goes for a compass measurement in degrees when relating the direction to the boat: the bow is 360/0. An angle measure between two consecutive numbers on a clock is: 360 degrees divided by 12-“hour” markers = 30 degrees. Therefore, 10 o’clock was 0 degrees – (2 “hours”)= 0 degrees- (2*30 degrees)= -60 degrees. A negative degree less than 180 refers to the port side (left).

Killer whale traveling northbound.

Our trip was chalked full of science and graced with cooperative weather conditions. There were more highlights than I could list in a single sitting. We towed zooplankton nets under the night sky while eating ice cream bars; we sang together at sunset and watched the atmospheric phenomena: the green flash; we witnessed a humpback lunge-feeding beside the ship’s bow; and we saw a sperm whale traveling across calm seas.

Sperm whale surfacing before a long dive.

On this cruise, our lab focused on the marine mammal observations—which proved excellent during the cruise. In only four days of surveying, we had 43 marine mammal sightings containing 362 individuals representing 9 species (See figure 1). As you can see from figure 2, we traveled over shallow, coastal and deep waters, in both Washington and Oregon before inland to Portland, OR. Because we ventured to areas with different bathymetric and oceanographic conditions, we increased our likelihood of seeing a higher diversity of species than we would if we stayed in a single depth or area.

Humpback whale lunge feeding off the bow.
Number of sightings Total number of individuals
Humpback whale 22 40
Pacific white-sided dolphin 3 249
Northern right whale dolphin 1 9
Killer whale 1 3
Dall’s porpoise 5 49
Sperm whale 1 1
Gray whale 1 1
Harbor seal 1 1
California sea lion 8 9
Total 43 362

Figure 1. Summary table of all species sightings during cruise while the science team observed from the flybridge.

Pacific white-sided dolphins swimming towards the vessel.

Figure 2. Map with inset displaying study area and sightings observed by species during the cruise, made in ArcMap. (Image source: Alexa Kownacki).

Even after two days of STEM outreach events in Portland, we were excited to incorporate more science. For the transit from Portland, OR to Newport, OR, the entire science team consisted two people: me and Jason. But even with poor weather conditions, we still used science to answer questions and help us along our journey—only with different goals than on our main leg. With the help of the marine technician, we set up a camera on the bow of the ship, facing aft to watch the vessel maneuver through the famous Portland bridges.

Video 1. Time-lapse footage of the R/V Oceanus maneuvering the Portland Bridges from a GoPro. Compiled by Alexa Kownacki, assisted by Jason Miranda and Kristin Beem.

Prior to the crossing the Columbia River bar and re-entering the Pacific Ocean, the R/V Oceanus maneuvered up the picturesque Columbia River. We used our geospatial skills to locate our fellow science team member and high school student, Chris, who was located on land. We tracked each other using GPS technology in our cell phones, until the ship got close enough to use natural landmarks as reference points, and finally we could use our binoculars to see Chris shining a light from shore. As the ship powered forward and passed under the famous Astoria-Megler bridge that connects Oregon to Washington, Chris drove over it; he directed us “100 degrees to port”. And, thanks to clear directions, bright visual aids, and spatiotemporal analysis, we managed to find our team member waving from shore. This is only one of many examples that show how in a few days at sea, students utilized new skills, such as marine mammal observational techniques, and honed them for additional applications.

On the bow, Alexa and Jason use binoculars to find Chris–over 4 miles–on the Washington side of the Columbia River. (Image source: Kristin Beem)

Great science is the result of teamwork, passion, and ingenuity. Working alongside students, teachers, and other, more-experienced scientists, provided everyone with opportunities to learn from each other. We created great science because we asked questions, we passed on our knowledge to the next person, and we did so with enthusiasm.

High school students, Jason and Chris, alongside Dr. Leigh Torres, all try to get a glimpse at the zooplankton under Dr. Kim Bernard’s microscope. (Image source: Tracy Crews).

Check out other blog posts written by the science team about the trip here.

“Applied conservation science”

By Dawn Barlow, M.S.
Ph.D. student, Department of Fisheries and Wildlife, Oregon State University

For years, I have said I want to do “applied conservation science”. As an undergraduate student at Pitzer College I was a double major in Biology and Environmental Policy. While I have known that I wanted to study the oceans on some level my whole life, and I have known for about a decade that I wanted to be a scientist, I realized in college that I wanted to learn how science could be a tool for effective conservation of the marine ecosystems that fascinate me.

Answering questions during my public defense seminar. Photo by Leila Lemos.

Just over a week ago, I successfully defended my MS thesis. When Leigh introduced me at the public seminar, she read a line from my initial letter to her expressing my interest in being her graduate student: “My passion for cetacean research lies not only in fascination of the animals but also how to translate our knowledge of their biology and ecological roles into effective conservation and management measures.” I believe I’ve grown and learned a lot in the two and a half years since I crafted that email and nervously hit send, but the statement is still true.

My graduate research in many ways epitomizes what I am passionate about. I am part of a team studying the ecology of blue whales in a highly industrial area of New Zealand. Not only is it a system in which we can address fascinating questions in ecology, it is also a region that experiences extensive pressure from human use and so all of our findings have direct management implications.

We recently published a paper documenting and describing this New Zealand blue whale population, and the findings reached audiences and news outlets far and wide. Leigh and I are headed to New Zealand for the first two weeks in July. During this time we will not only present our latest findings at the Society for Conservation Biology Oceania Conference, we will also meet with managers at the New Zealand Department of Conservation, speak with the Minister of Energy and Resources as well as the Minster of Conservation, meet with the CEO and Policy Advisor of PEPANZ (a representative group of oil and gas companies in New Zealand), and participate in a symposium of scientists and stakeholders aiming to establish goals for the protection of whales in New Zealand. Now, “applied conservation science” extends well beyond a section in the discussion of a paper outlining the implications of the findings for management.

A blue whale surfaces in front of a floating production storage and offloading (FPSO) vessel servicing the oil rigs in the South Taranaki Bight. Photo by Dawn Barlow. 

During our 2017 field season in New Zealand, Leigh and I found ourselves musing on the flying bridge of the research vessel about all the research questions still to be asked of this study system and these blue whales. How do they forage? What are their energetic demands? How does disturbance from oil and gas exploration impact their foraging and their energetic demands? Leigh smiled and told me, “You better watch out, or this will turn into your PhD.” I said that maybe it should. Now I am thrilled to immerse myself into the next phase of this research project and the next chapter of my academic journey as a PhD student. This work is applied conservation science, and I am a conservation biologist. Here’s to retaining my passion for ecology and fascination with my study system, while not losing sight of the implications and applications of my work for conservation. I am excited for what is to come!

Dawn Barlow and Dr. Leigh Torres aboard the R/V Star Keys during the 2017 blue whale field season in New Zealand. Photo by Todd Chandler.

There is no such thing as “throwing it away”: Why I try to reduce my plastic consumption

By Dawn Barlow, MSc student, Department of Fisheries and Wildlife

Several years ago, I had a profound experience on a remote little coral island in the Kingdom of Tonga, in the middle of the South Pacific. I was a crew member aboard a 46’ sailboat, traveling in Tonga and Fiji. This trip was a time when I became very aware of my consumption because when living on a boat, you carry your waste with you. The South Pacific is a region of little islands scattered across wide ocean spaces, and my eyes were opened to island culture. An island is analogous to a large boat—your waste cannot go far. The idea of “throwing it away” began to seem suspect. Does anything really “go away”?

A seemingly pristine beach on Tungua Island, Kingdom of Tonga. Upon closer inspection, we realized the volume of plastics that could be found even on an island this remote. Photo by D. Barlow.

After spending a night at anchor in the Kingdom of Tonga when I listened through the hull to signing humpback whales and felt their deep tones vibrate our mast, I thought I was in a place as pure and untouched as I would ever experience. The next morning, we ventured to shore on an island that we could circumnavigate in less than an hour on foot. But the soft sand was strewn with more than just conch and cowrie shells. It was also strewn with plastic. I began to pick up the trash items on the beach, and before long I had a large bag filled to the brim with plastic. The captain humored me when I wanted to bring it back to the boat. But what was I going to do with it then? These remote island places have very little infrastructure—they can’t recycle it there. So should I take it to another island where it would likely get barged out and dumped back in the ocean? Or a landfill? What struck me most was the realization that none of these products were manufactured on these islands. Some of this plastic may have been imported to the nearest island with a town or city, while some likely had drifted across the sea to this landing spot. All the plastics that I picked up on that one, small island were just a tiny portion of ocean plastic that wash ashore on the world’s beaches, a tiny glimpse of a much larger issue.

Eight million tons of plastics make their way into the oceans each year. Let that number sink in. There is no such thing as “throwing it away”, because “away” does not exist. “Away” is the ocean.

“What lies under”. Image credit: Ferdi Rizkiyanto.

Before sitting down to write this, I participated in a beach cleanup event here in my local community in Newport, Oregon. Today along the whole Oregon Coast, over 3,000 volunteers removed more than 15,000 pounds of litter and marine debris from the coastal places they love. A few weeks ago Surfrider Foundation screened the documentary Straw, directed by Linda Booker. Following the well-attended screening, a panel of community members from Surfrider, the Oregon Coast Aquarium, and Thomson Sanitary Services answered questions from the audience. In a lively discussion, we learned about why China is no longer accepting our recyclables and consequently we can only recycle plastics #1 and #2 here in Oregon, about how marine animals are rehabilitated after becoming entangled in plastic waste, about how Surfrider is encouraging local businesses to switch to paper straws and only offer them by request. As daunting as it is to think about the scale of our plastic consumption and the damage it causes, I am encouraged by the engagement and bottom-up movement in my community.

My life is shaped by the ocean—it is my inspiration, my work, my passion, my place of adventure and joy, the place that humbles me and heals me. Imagining the relationship between the products I use and the ocean is what makes me think twice before consuming. If I am driving in my car and want to stop for coffee but don’t have a reusable mug with me, I consider “if I were on a boat, would I drink coffee out of a single-use cup and then throw it away, toss it over the rail?” Of course not. So I invite you to think about the plastic in your life—it is everywhere. Think about how that plastic relates to what you love. Will it make its way into the stomach of a baby albatross, a sea turtle, the filter-feeding shellfish and large predatory fish that you love to eat?

Lifestyle changes can be simple and impactful. As a consumer, use your purchase power—when you have the option to buy a product wrapped in plastic or one that is not, opt for no plastic. Show manufacturers what you value. Bring reusable bags to the grocery store. Use waxed paper instead of plastic saran wrap. Talk to others, share your choices with them, encourage them to minimize their plastic use. And if you need context or motivation, imagine the relationship between the products you consume and the places that you love.

 

What REALLY is a Wildlife Biologist?

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The first lecture slide. Source: Lecture1_Population Dynamics_Lou Botsford

This was the very first lecture slide in my population dynamics course at UC Davis. Population dynamics was infamous in our department for being an ultimate rite of passage due to its notoriously challenging curriculum. So, when Professor Lou Botsford pointed to his slide, all 120 of us Wildlife, Fish, and Conservation Biology majors, didn’t know how to react. Finally, he announced, “This [pointing to the slide] is all of you”. The class laughed. Lou smirked. Lou knew.

Lou knew that there is more truth to this meme than words could express. I can’t tell you how many times friends and acquaintances have asked me if I was going to be a park ranger. Incredibly, not all—or even most—wildlife biologists are park rangers. I’m sure that at one point, my parents had hoped I’d be holding a tiger cub as part of a conservation project—that has never happened. Society may think that all wildlife biologists want to walk in the footsteps of the famous Steven Irwin and say thinks like “Crikey!”—but I can’t remember the last time I uttered that exclamation with the exception of doing a Steve Irwin impression. Hollywood may think we hug trees—and, don’t get me wrong, I love a good tie-dyed shirt—but most of us believe in the principles of conservation and wise-use A.K.A. we know that some trees must be cut down to support our needs. Helicoptering into a remote location to dart and take samples from wild bear populations…HA. Good one. I tell myself this is what I do sometimes, and then the chopper crashes and I wake up from my dream. But, actually, a scientist staring at a computer with stacks of papers spread across every surface, is me and almost every wildlife biologist that I know.

The “dry lab” on the R/V Nathaniel B. Palmer en route to Antarctica. This room full of technology is where the majority of the science takes place. Drake Passage, International Waters in August 2015. Source: Alexa Kownacki

There is an illusion that wildlife biologists are constantly in the field doing all the cool, science-y, outdoors-y things while being followed by a National Geographic photojournalist. Well, let me break it to you, we’re not. Yes, we do have some incredible opportunities. For example, I happen to know that one lab member (eh-hem, Todd), has gotten up close and personal with wild polar bear cubs in the Arctic, and that all of us have taken part in some work that is worthy of a cover image on NatGeo. We love that stuff. For many of us, it’s those few, memorable moments when we are out in the field, wearing pants that we haven’t washed in days, and we finally see our study species AND gather the necessary data, that the stars align. Those are the shining lights in a dark sea of papers, grant-writing, teaching, data management, data analysis, and coding. I’m not saying that we don’t find our desk work enjoyable; we jump for joy when our R script finally runs and we do a little dance when our paper is accepted and we definitely shed a tear of relief when funding comes through (or maybe that’s just me).

A picturesque moment of being a wildlife biologist: Alexa and her coworker, Jim, surveying migrating gray whales. Piedras Blancas Light Station, San Simeon, CA in May 2017. Source: Alexa Kownacki.

What I’m trying to get at is that we accepted our fates as the “scientists in front of computers surrounded by papers” long ago and we embrace it. It’s been almost five years since I was a senior in undergrad and saw this meme for the first time. Five years ago, I wanted to be that scientist surrounded by papers, because I knew that’s where the difference is made. Most people have heard the quote by Mahatma Gandhi, “Be the change that you wish to see in the world.” In my mind, it is that scientist combing through relevant, peer-reviewed scientific papers while writing a compelling and well-researched article, that has the potential to make positive changes. For me, that scientist at the desk is being the change that he/she wish to see in the world.

Scientists aboard the R/V Nathaniel B. Palmer using the time in between net tows to draft papers and analyze data…note the facial expressions. Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

One of my favorite people to colloquially reference in the wildlife biology field is Milton Love, a research biologist at the University of California Santa Barbara, because he tells it how it is. In his oh-so-true-it-hurts website, he has a page titled, “So You Want To Be A Marine Biologist?” that highlights what he refers to as, “Three really, really bad reasons to want to be a marine biologist” and “Two really, really good reasons to want to be a marine biologist”. I HIGHLY suggest you read them verbatim on his site, whether you think you want to be a marine biologist or not because they’re downright hilarious. However, I will paraphrase if you just can’t be bothered to open up a new tab and go down a laugh-filled wormhole.

Really, Really Bad Reasons to Want to be a Marine Biologist:

  1. To talk to dolphins. Hint: They don’t want to talk to you…and you probably like your face.
  2. You like Jacques Cousteau. Hint: I like cheese…doesn’t mean I want to be cheese.
  3. Hint: Lack thereof.

Really, Really Good Reasons to Want to be a Marine Biologist:

  1. Work attire/attitude. Hint: Dress for the job you want finally translates to board shorts and tank tops.
  2. You like it. *BINGO*
Alexa with colleagues showing the “cool” part of the job is working the zooplankton net tows. This DOES have required attire: steel-toed boots, hard hat, and float coat. R/V Nathaniel B. Palmer, Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

In summary, as wildlife or marine biologists we’ve taken a vow of poverty, and in doing so, we’ve committed ourselves to fulfilling lives with incredible experiences and being the change we wish to see in the world. To those of you who want to pursue a career in wildlife or marine biology—even after reading this—then do it. And to those who don’t, hopefully you have a better understanding of why wearing jeans is our version of “business formal”.

A fieldwork version of a lab meeting with Leigh Torres, Tom Calvanese (Field Station Manager), Florence Sullivan, and Leila Lemos. Port Orford, OR in August 2017. Source: Alexa Kownacki.

GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

Skype a Scientist – Are you smarter than a middle schooler?

By Florence Sullivan, MSc

What do baby whales eat?

Does the mom whale take care of the baby whale alone?

How do whales communicate?

What are their behaviors?

These are the questions 4th grade students half a world away asked me.  They are studying biodiversity and were very curious to meet a real life scientist.  It was 2:00pm on a Tuesday here in Newport, OR, while in Australia, this classroom full of students was sitting in their 9:00am Wednesday science class.  We had an hour-long conversation about gray whale behaviors, habitat, life cycle, and general biology – all thanks to the wonders of science, technology and the computer program, Skype. The next day, I did it all again, and Skyped in to a classroom in British Columbia, to field questions about gray whales, right whales and science careers from a group of enthusiastic 5th and 6th grade students.

 

A class of Australian 4th graders had many imaginative questions for me through the Skype a Scientist Program.

But how in the world did I end up answering questions over Skype for a classroom full of kids in the first place? Like many good things, it began with a conversation.  During the 2016 USA election cycle, it became apparent that many people in this country distrust scientists. Sarah McAnulty, a PhD student at the University of Connecticut who studies the immune system of bob tail squid, had already been engaging in informal science communication through a profile on tumblr.  But posting things on tumblr is like preaching to the choir – your audience tends to be people who are already interested in your subject. If the problem is trying to change the public perception of scientists from aloof and insular to trustworthy and approachable, you need to start by finding people who have a lot of questions, and few pre-existing prejudices.  Who fits the bill perfectly? Kids!

After conversations with colleagues, she came up with the idea of using Skype to reach classrooms of students outside of the range where scientists usually congregate (large cities and universities).  Sarah started by connecting a handful of UConn colleagues with K-12 teachers through Facebook, but the idea quickly gained steam through mentions at a scientific conference, posts on the ‘March for Science’ Facebook group, media coverage, and word-of-mouth sharing between colleagues on both the teaching and the research side of the story.  Now, there is a full-fledged website (https://www.skypeascientist.com/) where teachers and scientists can sign up to be matched based on availability, topic, and sometimes, demographic.  When pairing classrooms and scientists, Sarah makes an effort for minority students (whether this means race, gender, disability, language, or other) to see themselves represented in the scientists they get to talk to, if possible.  Representation matters –we are beyond the age of old white men in lab coats being the only ‘real scientists’ represented in media, but unfortunately, the stereotype is not dead yet! In less than a year, the program has grown to over 1900 scientists, with new fields of expertise being added frequently as people spread the word and get interested.  The program has been, and promises to continue being, an excellent resource for teachers who want to show the relevance of the subjects being discussed in their classrooms. As evidenced by the fact that I spoke with a classroom in Australia, this is a global program – check out the maps below to see where students and scientists are coming from!

This map shows the locations of all participating classrooms, current on Oct 12, 2017.
This map shows the locations of all participating scientists, current on October 22, 2017.

As for myself, I got involved because my lab mate, Alexa, mentioned how much fun she had Skyping with students.  The sign-up process was incredibly easy, and when I got matched with two classrooms, the organizers even provided a nice mad-libs style ‘fill in the blank’ introduction letter so that I didn’t waste time agonizing over how to introduce myself.

Introductory Mad-libs for scientists. Courtesy of the Skype a Scientist program.

I sent the classrooms the youtube video of my field work, and a couple of these blog posts, and waited to hear back.  I was very impressed with the 5th/6th grade class from British Columbia because the teacher actually let the students take the lead from the get-go.  One of the students replied to my email, told me what they were studying, and started the process of scheduling a meeting time that would work for both of us. When I called in, two other students took the reins, and acted as spokespeople for the rest of their classmates by repeating questions from the back of the room so that I could hear everything clearly. It was so fun to see and hear the enthusiasm of the students as they asked their questions.  Their deep curiosity and obvious excitement about the subject matter was contagious, and I found my own tone, body language, and attitude shifting to match theirs as I helped them discover the building blocks of marine ecology that I have long accepted as normal. This two way street of learning is a good reminder that we all start somewhere.

If you are interested in the program at all, I encourage you to sign up at this link: (https://www.skypeascientist.com/). Who knows, engaging with kids like this just might remind you of the innocent curiosity of childhood that brought you to your scientific career in the first place.

 

Here are some of my favorite question that I was asked, and the responses I gave:

  • How do gray whales communicate?

With songs and underwater sounds! Check out this great website for some great examples, and prepare to be amazed! (I played the Conga and the belch-like call during the skype session, much to the amusement of the students)  https://www.sanignaciograywhales.org/project/acoustics/

  • What do baby whales eat?

Whales are mammals just like us, so believe it or not, baby whales drink their mother’s milk!

  • How long have you been a marine special ecologist for?

My favorite bit here was the mis-spelling, which made me a ‘special’ ecologist instead of a ‘spatial’ ecologist.  So I talked about how spatial ecology is a special type of ecology where we look at how big things move in the ocean!

  • My question is, can a grey whale bite people if people come close to them?
    This was a chance to show off our lab baleen samples!  I also took the time to look this up, and it turns out that bite is defined as “using teeth to cut into something” and a gray whale doesn’t have teeth!  Instead, they have baleen, which they use to sieve stuff out of the water.  So I don’t think you need to worry about getting bitten by a gray whale. That being said, it’s important not to get close to them, because they are so much bigger than us that they could hurt us on accident.

 

  • When you go out to see the whales, why don’t you use slightly bigger boats so you don’t flip over if the whale gets too close to you, or when you get to close to the whale?
    Our research kayak is a never-ending delight. It’s less expensive than a bigger boat, and doesn’t use fossil fuels. We want to be quiet in the water and not disturb the whale, and actively avoid getting within 100 yards so there shouldn’t be any danger. Sometimes the whales surprise us though, and we have to be careful. In this case, everyone has safety training and is able to rescue themselves if the boat should flip.

(This led to an entertaining discussion of field safety, and the appalling idea that I would make my interns jump out of the kayak into cold Pacific water on purpose during safety training)

There were many more questions, but why don’t you give the program a try, and see what kind of questions you get to answer?!

Safety First! 

The GEMM Lab is Conference-Bound!

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Every two years, an international community of scientists gather for one week to discuss the most current and pressing science and conservation issues surrounding marine mammals. The thousands of attendees range from longtime researchers who have truly shaped the field throughout the course of their careers to students who are just beginning to carve out a niche of their own. I was able to attend the last conference, which took place in San Francisco in 2015, as an undergraduate. The experience cemented my desire to pursue marine mammal research in graduate school and beyond, and also solidified my connection with Leigh Torres and the Geospatial Ecology of Marine Megafauna Laboratory, leading to my current enrollment at Oregon State University. This year, the 22nd Biennial Conference on the Biology of Marine Mammals takes place in Halifax, Nova Scotia, Canada. At the end of this week, Florence, Leila, Amanda, Solene, Sharon and I will head northeast to represent the GEMM Lab at the meeting!

As those of you reading this may not be able to attend, I’d like to share an overview of what we will be presenting next week. If you will be in Halifax, we warmly invite you to the following presentations. In order of appearance:

Amanda will present the final results from part of her MSc thesis on Monday in a presentation titled Comparative fine-scale harbor porpoise habitat models developed using remotely sensed and in situ data. It will be great for current GEMM Lab members to catch up with this recent GEMM Lab graduate on the other side of the continent! (Session: Conservation; Time: 4:00 pm)

On Tuesday morning, Leila will share the latest and greatest updates on her research about Oregon gray whales, including photogrammetry from drone images and stress hormones extracted from fecal samples! Her presentation is titled Combining traditional and novel techniques to link body condition and hormone variability in gray whales. This is innovative and cutting-edge work, and it is exciting to think it will be shared with the international research community. (Session: Health; Time: 10:45 am)

Did you think humpback whales have been so well studied that we must know just about everything about them? Think again! Solene will be sharing new and exciting insights from humpback whales tagged in New Caledonia, who appear to spend an intriguing amount of time around seamounts. Her talk Why do humpback whales aggregate around seamounts in South Pacific tropical waters? New insights from diving behaviour and ocean circulation analyses, will take place on Tuesday afternoon. (Session: Habitat and Distribution Speed Talks; Time: 1:30 pm)

I will be presenting the latest findings from our New Zealand blue whale research. Based on multiple data streams, we now have evidence for a unique blue whale population which is present year-round in New Zealand waters! This presentation, titled From migrant to resident: Multiple data streams point toward a resident New Zealand population of blue whales, will round out the oral presentations on Tuesday afternoon. (Session: Population Biology and Abundance; Time: 4:45 pm)

The GEMM Lab is using new technologies and innovative quantitative approaches to measure gray whale body condition and behaviors from an aerial perspective. On Wednesday afternoon, Sharon will present Drone up! Quantifying whale behavior and body condition from a new perspective on behalf of Leigh. With the emerging prevalence of drones, we are excited to introduce these quantitative applications. (Session: New Technology; Time: 11:45 am)

GoPros, kayaks, and gray whales, oh my! A limited budget couldn’t stop Florence from conducting excellent science and gaining new insights into gray whale fine-scale foraging. On Thursday afternoon, she will present Go-Pros, kayaks and gray whales: Linking fine-scale whale behavior with prey distributions on a shoestring budget, and share her findings, which she was able to pull off with minimal funds, creative study design, and a positive attitude. (Session: Foraging Ecology Speed Talks; Time: 1:55 pm)

Additional Oregon State University students presenting at the conference will include Michelle Fournet, Samara Haver, Niki Diogou, and Angie Sremba. We are thrilled to have such good representation at a meeting of this caliber! As you may know, we are all working on building the GEMM Lab’s social media presence and becoming more “twitterific”. So during the conference, please be sure to follow @GEMMLabOSU on twitter for live updates. Stay tuned!

Twitterific: The Importance of Social Media in Science

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

How do you create the perfect chemical formula for social media in science? (Photo Source: The Royal Society of Victoria)

There’s a never-ending debate about how active we, as scientists, should be on social media. Which social media platforms are best for communicating our science? When it comes to posting, how much is too much? Should we post a few, critical items that are highly pertinent, or push out everything that’s even closely related to our focus? Personally, my deep-rooted question revolves around privacy. What aspects of my life (and thereby my science), do I keep to myself and what do I share? I asked that exact question at a workshop last year, and I have some main takeaways.

At last year’s Southern California Marine Mammal Workshop, there was a very informative session about the role of media in science. More specifically, there was a talk on “Social Media and Communications Hot Topics” by Susan Poulton, the Chief Digital Officer of the Franklin Institute science museum in Philadelphia.  She emphasized how trust factors into our media connections and networks. What was once communicated in person or on paper, has given way to this idea of virtual connections. We all have our own “bubbles”. Susan defined “bubbles” as the people who we trust. We have different classifications of bubbles: the immediate bubble that consists of our friends, family, and close colleagues, the more distant bubble that has your friends of friends and distant colleagues, and the enigma bubble that has people you find based on computer algorithms that the computer thinks you’ll find relative. Susan brought up the point that many of us stay within our immediate bubble; even though we may discuss all of the groundbreaking science with our friends and coworkers, we never burst that bubble and expand the reaches of our science into the enigma bubble. I frequently fall into this category both intentionally and unintentionally.

Coworkers from NOAA’s Southwest Fisheries Science Center attending the Southern California Marine Mammal Workshop 2017. Pictured from left to right: Alexa, Michelle, Holly, and Keiko. (Photo source: Michelle Robbins.)

Many of us want to be advocates for our science. Education and outreach are crucial for communicating our message. We know this. But, can we keep what little personal life we have outside of science, private? The short of the long of it: No. Alisa Schulman-Janiger, another scientist and educator on the panel, reinforced this when she stated that she keeps a large majority of her social media posts as “public” to reach more people. Queue me being shocked. I have a decent social media presence. I have a private Facebook account, but public Twitter and LinkedIn accounts that I use only for science/academics/professional stuff, public Instagram, YouTube, and Flickr accounts that are travel and science-related, as well as a public blog that is a personal look at my life as a scientist who loves to travel. I tell you this because I am still incredibly skeptical about privacy; I keep my Facebook page about as private as possible without it being hidden. Giving up that last bit of my precious, immediate bubble and making it for the world to see feels invasive. But, I’m motivated to make sure my science reaches people who I don’t know. Giving science a personal story is what captures people; it’s why we read those articles in our Facebook feeds, and click on the interesting articles while scrolling through Twitter. Because of this, I’ve begun making more, not all, of my Facebook posts public. I’m more active on Twitter. I’m writing weekly blog posts again (we’ll see how long I can keep that up for). I’m trying to find the right balance that will keep my immediate bubble still private enough for my peace of mind and public enough that I am presenting my science to networks outside of my own—pushing through to the enigma bubble. Bubbles differ for each of us and we have to find our own balance. By playing to the flexibility of our bubbles, we can expand the horizons of our research.

Alexa at an Education/Outreach event, responding to a young student asking, “Why didn’t you bring this seal when it was alive?” (Photo source: Lori Lowder).

This topic was recently broached while attending my first official GEMM Lab meeting. Leigh brought up social media and how we, as a lab, and as individuals, should make an effort to shine light on all the amazing science that we’re a part of. We, as a lab, are trying to be more present. Therefore, in addition to these AMAZING weekly blog posts varying from highly technical to extremely colloquial, the lab will be posting more on Twitter. And that comes to the origin of this week’s blog post’s title. Leigh said that we should be “Twitterific” and I can’t help but feel that adjective perfectly suits our current pursuit. Here’s to being Twitterific!

With all that being said, be sure to follow us on: Twitter, YouTube, and here (don’t forget to follow us by entering your email address on the lefthand side of the page), of course.

Building scientific friendships: A reflection on the 21st annual meeting of the Northwest Student Chapter of the Society for Marine Mammalogy

By Dawn Barlow, M.Sc. student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I recently had the opportunity to attend and present my research at the 21st meeting of the Northwest Student Chapter of the Society for Marine Mammalogy. This gathering represented a community of graduate and undergraduate students from the Pacific Northwest, networking and discussing their research on the biology of marine mammals. Dr. John Ford, whose name has become synonymous with killer whale research in the Pacific Northwest, delivered a compelling keynote speech on not only the history of his research, but also the history of the relationships he has built in the field and the people that have shaped the past five decades of killer whale research. This theme of cultivating scientific relationships was a thread that carried us through the weekend. Beautiful weather had us all smiling happily as we ate our lunches outside, musing about science in the sunshine. A philosopher’s café event facilitated roundtable discussions with experts in veterinary science, spatial statistics, management consulting, physiology, and marine pollution. Students were given the space to ask questions ranging from manuscript writing advice to the worth of our work in the current political climate (and write notes or doodle drawings on the paper-covered tables as we listened).

The oral and poster presentations were all very impressive. I learned that bowhead whales are likely feeding year-round in the Canadian Arctic, adjusting their dive depth to the vertical location of their copepod prey. I learned that the aerobic dive limit of stellar sea lions is more of a sliding scale rather than a switch as it is for Weddell seals. I learned that some harbor seals are estuary specialists, feeding on salmon smolt. And I learned about the importance of herring to Northeast Pacific marine mammals through an energy-based ecosystem model. I had the opportunity to present my research on the ecology of New Zealand blue whales to an audience outside of Oregon State University for the first time, and was pleased with how my presentation was received.

Aaron Purdy, MSc student with the University of British Columbia’s Marine Mammal Research Unit, moderates the first oral presentation session wearing the designated “fluke tuke”. I may have giggled at the Canadian word for beanie, but I have to admit, “fluke tuke” has a much better ring to it than “fluke beanie”!

But beyond the scientific research itself, I also learned that there is a strong community of motivated and passionate young scientists in the Pacific Northwest studying marine mammals. Our numbers may not be many and we may be scattered across several different universities and labs, but our work is compelling and valuable. At the end of the weekend, it felt like I was saying goodbye to new friends and future colleagues. And, I learned that the magnificent size of a blue whale never fails to impress and amaze, as all the conference attendees marveled over the blue whale skeleton housed in the Beaty Biodiversity Museum at the University of British Columbia.

Left to right: Michelle Fournet, Samara Haver, myself, and Niki Diogou representing Oregon State University at the student conference. Behind us is a blue whale skeleton, housed in the Beaty Biodiversity Museum on the University of British Columbia campus.

Many thanks to the graduate students from the University of British Columbia who organized such a successful event! At the end of the conference, it was decided that the next meeting of the Northwest Student Chapter will be hosted by the Oregon State University students here at Hatfield Marine Science Center in Newport. It is a year away, but I am already looking forward to seeing these newfound peers again and hearing how their research has progressed.

A happy student selfie at the end of a successful conference! We are looking forward to a reunion at Hatfield Marine Science Center next May!