Unmanned Aircraft Systems: keep your distance from wildlife!

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

Unmanned aircraft systems (UAS) or “drones” are becoming commonly used to observe natural landscapes and wildlife. These systems can provide important information regarding habitat conditions, distribution and abundance of populations, and health, fitness and behavior of the individuals (Goebel et al. 2015, Durban et al. 2016).

The benefits for the use of UAS by researchers and wildlife managers are varied and include reduced errors of population estimations, reduced observer fatigue, increased observer safety, increased survey effort, and access to remote settings and harsh environments (Koski et al. 2010, Vermeulen et al. 2013, Goebel et al. 2015, Smith et al. 2016). Importantly, data gathered from UAS can provide needed information for the conservation and management of several species. Although it is often assumed that wildlife incur minimal disturbance from UAS due to the reduced noise compared to traditional aircraft used for wildlife monitoring (Acevedo-Whitehouse et al. 2010), the impacts of UAS on most wildlife populations is currently unexplored.

Several studies have tried to comprehend the effects of UAS flights over animals and so far there is no evidence of behavioral disturbance. For instance Vermeulen et al. (2013) conducted a study where authors observed a group of elephants’ reaction or warning behavior while a UAS passed ten times over the individuals at altitudes of 100 and 300 meters, and no disturbance was recorded. Furthermore, a study conducted by Acevedo-Whitehouse et al. (2010) reported that six different species of large cetaceans (Bryde’s whale, fin whale, sperm whale, humpback whale, blue whale and gray whale) did not display avoidance behavior when approached by the UAS for blow sampling, suggesting that the system caused minimal distress (negative stress) to the individuals.

However, the fact that we cannot visually see an effect in the animal does not mean that a stress response is not occurring. A study analyzed the effects of UAS flights on movements and heart rate responses of American black bears in northwestern Minnesota (Ditmer et al. 2015). It was observed that all bears, including an individual that was hibernating, responded to UAS flights with increased heart rates (123 beats per minute above the pre-flight baseline). In contrast, no behavioral response by the bears was recorded (Figure 1).

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU Unmanned aircraft systems (UAS) or “drones” are becoming commonly used to observe natural landscapes and wildlife. These systems can provide important information regarding habitat conditions, distribution and abundance of populations, and health, fitness and behavior of the individuals (Goebel et al. 2015, Durban et al. 2016). The benefits for the use of UAS by researchers and wildlife managers are varied and include reduced errors of population estimations, reduced observer fatigue, increased observer safety, increased survey effort, and access to remote settings and harsh environments (Koski et al. 2010, Vermeulen et al. 2013, Goebel et al. 2015, Smith et al. 2016). Importantly, data gathered from UAS can provide needed information for the conservation and management of several species. Although it is often assumed that wildlife incur minimal disturbance from UAS due to the reduced noise compared to traditional aircraft used for wildlife monitoring (Acevedo-Whitehouse et al. 2010), the impacts of UAS on most wildlife populations is currently unexplored. Several studies have tried to comprehend the effects of UAS flights over animals and so far there is no evidence of behavioral disturbance. For instance Vermeulen et al. (2013) conducted a study where authors observed a group of elephants’ reaction or warning behavior while a UAS passed ten times over the individuals at altitudes of 100 and 300 meters, and no disturbance was recorded. Furthermore, a study conducted by Acevedo-Whitehouse et al. (2010) reported that six different species of large cetaceans (Bryde’s whale, fin whale, sperm whale, humpback whale, blue whale and gray whale) did not display avoidance behavior when approached by the UAS for blow sampling, suggesting that the system caused minimal distress (negative stress) to the individuals. However, the fact that we cannot visually see an effect in the animal does not mean that a stress response is not occurring. A study analyzed the effects of UAS flights on movements and heart rate responses of American black bears in northwestern Minnesota (Ditmer et al. 2015). It was observed that all bears, including an individual that was hibernating, responded to UAS flights with increased heart rates (123 beats per minute above the pre-flight baseline). In contrast, no behavioral response by the bears was recorded (Figure 1).
Figure 1: (A) Movement rates (meters per hour) of an adult female black bear with cubs prior to, during, and after a UAS flight (gray bar); (B) The corresponding heart rate (beats per minute) of the adult female black bear. Source: Modified from Figure 1 from Ditmer et al. 2015.

 

Therefore, behavioral analysis alone may not be able to describe the complete effects of UAS on wildlife, and it is important to consider other possible stress responses of wildlife.

Regarding marine mammals, only a few studies have systematically documented the effects of UAS on these animals. A review of these studies was produced by Smith et al. (2016) and the main factors influencing behavioral disturbance were identified as (1) noise and visual stimulus (from the UAS or its shadow), and (2) flight altitude of the UAS. Thus, studies that approach marine mammals closely with UAS (e.g., blow sampling in cetaceans) should be closely monitored for behavioral reactions because the noise level and visual stimulus will likely be increased.

Fortunately, when UAS work is applied to cetaceans and sirenians (manatees and dugongs) the air-water interface acts as a barrier to sound so these animals are unlikely to be acoustically disturbed by UAS. However, acoustic detection and response are still possible when an animal’s ears are exposed in the air during a surfacing event.

The best way to minimize stress responses in wildlife is to use caution while operating UAS at any altitude. According to National Oceanic and Atmospheric Administration (NOAA), “UAS can also be disruptive to both people and animals if not used safely, appropriately, or responsibly”. Therefore, since 2012, the Federal Aviation Administration (FAA) has required UAS operators in the United States to have a certified and registered aircraft, a licensed pilot, and operational approval, known as Section 333 Exemption (Note: in late August 2016, the 333 will be replaced by a revision to part 107). These authorizations require an air worthiness statement or certificate and registered aircraft. Public entities, like Oregon State University, operate under a certificate of authorization (COA.) As a public entity OSU certifies its own aircraft and sets standards for UAS operators. These permit requirements discourage illegal operations and improves safety.

Regarding marine mammals, all UAS operators should also be aware of The Marine Mammal Protection Act (MMPA) of 1972. This law makes it illegal to harass marine mammals in the wild, which may cause disruption to behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering. A close UAS approach has the potential to cause harassments to marine mammals, thus federal guidelines recommend keeping a safe distance from these animals in the wild. The required vertical distance is 1000 ft for most marine mammals, but increases for endangered animals such as the North Atlantic right whales with a required buffer of 1500 ft (http://www.nmfs.noaa.gov/pr/uas.html). Therefore, NOAA evaluates all scientific research that use UAS within 1000 ft of marine mammals in order to ensure that the benefits outweigh possible hazards. NOAA distributes research permits accordingly.

Of course, with new technology the rules are always changing. In fact, last week the Department of Transportation (DOT) and the FAA finalized the first operational rules for routine commercial use of small UAS. These new guidelines aim to support new innovations in order to spur job growth, advance critical scientific research and save lives, and are designed to minimize risks to other aircraft and people and property on the ground. These new regulations include several requirements (e.g., height and speed restrictions) and hopefully allow for a streamlined system that enables beneficial and exciting wildlife research.

For my PhD project we are using UAS to collect aerial images from gray whales in order to describe behavioral patterns and apply a photogrammetry methodology. Through these methods we will determine the overall body condition and health of the individuals for comparison to variable ambient ocean noise levels. This project is conducted in collaboration with the NOAA Pacific Marine Environmental Lab.

Since October 2015, we have conducted 31 over-flights of gray whales using our UAS (DJI Phantom 3) and no behavioral disturbance has been observed. When over the whale(s) we generally fly between 25 and 40 m above the animals. We have a FAA certified UAS operator and fly under our NOAA/NMFS permit 16111. Prior to each flight we ensure that the weather conditions are safe, the whales are behaving normally, and that no on-lookers from shore or other boats will be disturbed.

Here is a video showing the launch and retrieval of the UAS system, our research vessel, the surrounding Oregon coastline beauty and gray whale individuals. The video includes some interesting footage of a gray whale foraging over a shallow reef, indicating that this UAS flight did not disturb the animal’s natural behavior patterns.

We all have the responsibility to help keep wildlife safe. Here in the GEMM Lab, we commit to using UAS safely and responsibly, and aim to use this new and exciting technology to continue our efforts to better protect and understand marine mammals.

 

References

Acevedo‐Whitehouse K, Rocha‐Gosselin A and Gendron D. 2010. A novel non‐invasive tool for disease surveillance of free‐ranging whales and its relevance to conservation programs. Anim. Conserv. 13(2):217–225.

Ditmer MA, Vincent JB, Werden LK, Tanner JC, Laske TG, Iaizzo PA, Garshelis DL and Fieberg JR. 2015. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Current Biology 25:2278–2283.

Durban JW, Moore MJ, Chiang G, Hickmott LS, Bocconcelli A, Howes G, Bahamonde PA, Perryman WL and Leroi DJ. 2016. Photogrammetry of blue whales with an unmanned hexacopter. Marine Mammal Science. DOI: 10.1111/mms.12328.

Goebel ME, Perryman WL, Hinke JT, Krause DJ, Hann NA, Gardner S and LeRoi DJ. 2015. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38(5):619-630.

Koski WR, Abgrall P and Yazvenko SB. 2010. An inventory and evaluation of unmanned aerial systems for offshore surveys of marine mammals. J. Cetacean Res. Manag. 11(3):239–247.

NOAA. Unmanned Aircraft Systems: Responsible Use to Help Protect Marine Mammals. In: http://www.nmfs.noaa.gov/pr/uas.html. Accessed in: 06/12/2016.

Smith CE, Sykora-Bodie ST, Bloodworth B, Pack SM, Spradlin TR and LeBoeuf NR. 2016. Assessment of known impacts of unmanned aerial systems (UAS) on marine mammals: data gaps and recommendations for researchers in the United States1 J. Unmanned Veh. Syst. 4:1–14.

Vermeulen C, Lejeune P, Lisein J, Sawadogo P and Bouché P. 2013. Unmanned aerial survey of elephants. PLoS One. 8(2):e54700.

 

SeaBASS 2016

By Samara Haver, MSc student, OSU Fisheries and Wildlife, ORCAA Lab

As a graduate student in bioacoustics (the study of noise produced by biological sources), my education is interdisciplinary. Bioacoustics is a relatively small field, and (together with my peers) I am challenged to find my way through coursework in ecology, physiology, physics, oceanography, statistics, and engineering to learn the background information that I need to develop and answer research questions (since this is my first post for the GEMM lab, here is a little more information about my interests). While this challenge (for all young bioacousticians) presents itself a little differently at all universities, the information gap is essentially the same. Hence, just over 6 years ago, Dr. Jennifer Missis-Old and Dr. Susan Parks recognized a need to fill this gap for graduate students in bioacoustics and created SeaBASS, a BioAcoustics Summer School.

This year, for the 4th iteration of the week-long program, I was lucky to have the opportunity to attend SeaBASS. I first heard about SeaBASS as a research assistant in Dr. Sofie Van Parijs’s passive acoustics group at the Northeast Fisheries Science Center, but the workshop is limited to graduate students only so I had to wait until I was officially enrolled in grad school to apply. My ORCAA lab-mates, Niki, Selene, and Michelle are all alumni of SeaBASS (read Miche’s re-cap from 2014 here ) so by the time I was preparing for my trip to upstate NY this summer to attend, I had a pretty good idea of what was to come.

As expected, the week was packed. I flew to the East Coast a few days early to visit our fearless ORCAA leader, Holger, at the Bioacoustics Research Program at the Cornell Lab of Ornithology, so I was lucky to be somewhat adjusted to EST by the time I arrived at Syracuse on Sunday afternoon. After exploring the campus, it was time for official SeaBASS programming to begin. Our first class, an “Introduction to Acoustics and Proportion”, began early on Monday morning. In the afternoon and through the rest of the week we also learned about active acoustics (creating a sound in the water and using the echo to detect animals or other things) and marine mammal physiology, echolocation, communication, and behavior. We also heard about passive acoustics (listening to existing underwater sounds), including the different types of technology being used and its application for population density estimation. On Friday afternoon, the final lecture covered the effects of noise on marine mammals.

Samara1 Some SeaBASS-ers testing the hypothesis that humans are capable of echolocation.

In addition to the class lectures given by each instructor, we also heard individual opinions about “hot topics” in bioacoustics. This session was my favorite part of the week because we (the students) had the opportunity to hear from a number of accomplished scientists about what they believe are the most pressing issues in the field. Unlike a conference or seminar, these short talks introduced (or reinforced) ideas from researchers in an informal setting, and among our small group it was easy to hear impressions from other SeaBASS-ers afterwards. As a student I spend a lot of my time working alone; my ORCAA labmates are focused on related acoustic projects, but we do not overlap completely. The best part of SeaBASS was sharing ideas, experiences, and general camaraderie with other students that are tackling questions very similar to my own.

Samara2 SeaBASS 2016

Although a full week of class would be plenty to take in by itself, our evenings were also filled with activities. We (students) shared posters (this was mine ) about our individual research projects, listened to advice about life as a researcher in the field, attended a Syracuse Chiefs baseball game, and at the end of each day reflected on our new knowledge and experiences over pints. So, needless to say, I returned home to Oregon completely exhausted, but also with refreshed excitement about my place in the small world of bioacoustics research.

Samara3 Luckily we had beautiful weather for the baseball game!

Samara4

 

The Gray [Whale]s are back in town – Field season 2016 is getting started!

By Florence Sullivan – MSc Student, GEMM Lab

Hello Everyone, and welcome back for season two of our ever-expanding research project(s) about the gray whales of the Oregon coast!

Overall, our goal is document and describe the foraging behavior and ecology of the Pacific Coast Feeding Group of Gray Whales on the Oregon Coast. For a quick recap on the details of this project read these previous posts:

During this summer season, the newest iteration of team ro”buff”stus will be heading back down to Port Orford, Oregon to try to better understand the relationship between gray whales and their mysid prey. Half the team will once again use the theodolite from the top of Graveyard Point to track gray whales foraging in Tichenor Cove, the Port of Port Orford, and the kelp beds near Mill Rocks.  Meanwhile, the other half of the team will use the R/V Robustus (i.e. a tandem ocean kayak named after our study species – Eschrichtius robustus, the gray whale) to repeatedly deploy a GoPro camera at several sampling locations in Tichenor cove. We hope that by filming vertical profiles of the water column, we will be able to create an index of abundance for the mysid to describe their temporal and spatial distribution of their swarms.  We’re particularly interested in the differences between mysid swarm density before and after a whale forages in an area, and how whale behaviors might change based on the relative density of the available prey.

The GEMM lab's new research vessel being launched on her maiden voyage.
Ready to take the R/V Robustus out for her maiden voyage in Port Orford to test some of our new equipment. photo credit: Leigh Torres

In theory, asking these questions seems simple – get in the boat, drop the camera, compare images to the whale tracklines, get an answer!  In reality, this is not the case. A lot of preparatory work has been going on behind the scenes over the last six months. First, we had to decide what kind of camera to use, and decide what sort of weighted frame to build to get it to sink straight to the bottom. Then came the questions of deployment by hand versus using a downrigger,

Example A why it is a bad idea to try to sample during a diatom bloom.
Example A why it is a bad idea to try to sample during a diatom bloom – You can’t see anything but green.

what settings to use on the camera, how fast to send it down and bring it back up, what lens filters are needed (magenta) and other logistical concerns. (Huge thank you to our friends at ODFW Marine Reserves Program for the help and advice they provided on many of these subjects.) We spent some time in late May testing our deployment system, and quickly discovered that sampling during a diatom bloom is completely pointless because visibility is close to nil.

However, this week, we were able to test the camera in non-bloom conditions, and it works!  We were able to capture images of a few small mysid swarms very near the bottom of the water column, and we didn’t need external lights to do it. We were worried that adding extra lights would artificially attract mysid to the camera, and bias our measurements, as well as potentially disturbing the whale’s foraging behavior. (Its also a relief because diving lights are expensive, and would have been one more logistical thing that could go wrong. General advice: Always follow the KISS method when designing a project – keep it simple, ——!)

 

This image is taken at a depth of ~10 meters, with no color corrective filter on the lens
This image is taken at a depth of ~10 meters, with no color corrective filter on the lens – notice how blurry the mysid are.
This is empty water, in the mid water column
This is empty water, in the mid water column
More Mysid! This time with a Magenta filter on the lens to correct the colors for us.
Much clearer Mysid! This time with a magenta filter on the lens to correct the colors for us.

My advisor recently introduced me to the concept of the “7 Ps”; Proper Prior Planning Prevents Piss Poor Performance.  To our knowledge, we are the first group to try to use GoPro cameras to study the spatial and temporal patterns of zooplankton aggregations. With new technology comes new opportunities, but we have to be systematic and creative in how we use them. Trial and error is an integral part of developing new methods – to find the best technique, and so that our work can be replicated by others. Now that we know the GoPro/Kayak set-up is capable of capturing useable imagery, we need to develop a protocol for how to process and quantify the images, but that’s a work in progress and can wait for another blog post.   Proper planning also includes checking last year’s equipment to make sure everything is running smoothly, installing needed computer programs on the new field laptop, editing sampling protocols to reflect things that worked well last year, and expanding the troubleshooting appendixes so that we have a quick reference guide for when things go wrong in the field.  I am sure that we will run into more weird problems like last year’s “Chinese land whale”, but I also know that we would have many more difficulties if we had not been planning this field effort for the last several months.

Planning our sampling pattern in Tichenor Cove
Planning our sampling pattern in Tichenor Cove.

Team Ro”buff”stus is from all over the place this year – we will have members from Oregon, North Carolina and Michigan – and we are all meeting for the first time this week.  The next two weeks are going to be a whirlwind of introductions, team bonding, and learning how to communicate effectively while using the theodolite, our various computer programs, GoPro, Kayak, and more!  We will keep the blog updated with our progress, and each team member will post at least once over the course of the summer. Wish us luck as we watch for whales, and feel free to join in the fun on pretty much any cliff-side in Oregon (as long as you’ve got a kelp bed nearby, chances are you’ll see them!)

Sonic Sea asks “can we turn down the volume before it’s too late?”

By: Amanda Holdman, MS student, Geospatial Ecology and Marine Megafauna Lab & Oregon State Research Collective for Applied Acoustics, MMI

It was March 15th, 2000; Kenneth Balcomb was drinking coffee with his new summer interns in the Bahamas when a goose-beaked whale stranded on a nearby beach. Balcomb, a whale researcher and former U.S. Navy Officer, gently pushed the whale out to sea but the beaked whale kept returning to the shore. He continued this process until a second beaked whale stranding was reported further down the beach; and then a third. Within hours, 17 cetaceans had stranded in the Bahamas trying to escape ‘something’ in the water, and Kenneth Balcomb was determined to solve the mystery of the mass stranding. The cause, he eventually learned, was extreme noise – sonar tests from Navy Warships.

The world is buzzing with the sounds of Earth’s creatures as they are living, interacting, and communicating with one another, even in the darkest depths of the oceans. Beneath the surface of our oceans lies a finely balanced, living world of sound. To whales, dolphins and other marine life, sound is survival; the key to how they navigate, find mates, hunt for food, communicate over vast distances and protect themselves against predators in waters dark and deep. Yet, this symphony of life is being disrupted and sadly destroyed, by today’s increasing noise pollution (Figure 1). Human activities in the ocean have exploded over the past 5 decades with ocean noise rising by 3db per decade (Halpern et al. 2008). People have been introducing more and more noise into the ocean from shipping, seismic surveys for oil and gas, naval sonar testing, renewable energy construction, and other activities. This increased noise has significant impacts on acoustically active and sensitive marine mammals. However, as the Discovery Chanel’s new documentary Sonic Sea points out “The biggest thing about noise in the ocean is that humans aren’t aware of the sound at all.” The increase of ocean noise has transformed the delicate ocean habitat, and has challenged the ability of whales and other marine life to prosper and survive.

June blogFigure 1: Anthropogenic sources contributing to ocean soundscapes and the impacts on marine megafauna survival (sspa.se)

Like the transformative documentary from 10 years ago, An Inconvenient Truth, which highlighted the reality and dangers of climate change, Sonic Sea aims to inform audiences of increased man-made noise in the oceans and the harm it poses to marine animals. The Hatfield Marine Science Center and Oregon Chapter of the American Cetacean Society offered a free, premier showing of the award-winning documentary followed by a scientific panel discussion. The panel featured Dave Mellinger, Joe Haxel, and Michelle Fournet of Oregon State University’s Cooperative Institute for Marine Resources Studies (CIMRS) marine bioacoustics research along with GEMM Lab leader, Leigh Torres, of the Marine Mammal Institute.

Sonic Sea introduces us to this global problem of ocean noise and offers up solutions for change. The film uncovers how better ship design, speed limits for large ships, quieter methods for under water resource exploration, and exclusion zones for sonar training can work to reduce the noise in our oceans. However, these efforts require continued innovation and regulatory involvement to bring plans to action.

Around the world the scientific community, policymakers and authorities such as The National Oceanic and Atmospheric Administration (NOAA), the European Union (EU), the International Maritime Organization (IMO) and other authorities have increasingly pressed for the reduction of noise.  NOAA, which manages and protects marine life in United States waters, is trying to reduce ocean noise through their newly released Ocean Noise Strategy Roadmap, where the challenge is dealt with as a comprehensive issue rather than a case-by-case basis. This undersea map is a 10-year plan that aims to identify areas of specific importance for cetaceans and the temporal, spatial, and frequency of man-made underwater noise. After obtaining a more comprehensive scientific understanding of the distributions and effects of noise in the ocean, these maps can help to develop better tools and strategies for the management and mitigation of ocean noise.

Sonic Sea states “we must protect what we love” but then asks “how we can love it if we don’t understand it?” Here at GEMM Lab and the Marine Mammal Institute, we are trying to understand marine species ecology, distributions and behavioral responses to anthropogenic impacts. One of the suggestions Sonic Sea makes to reduce the impact of ocean noise is to restrict activity in biologically sensitive habitats. Therefore, we must know where these important areas are. In an ideal world, we would have a good inventory of data on the marine animals present in a region and when these animals breed, birth and feed. Then we could use this information to guide marine spatial planning and management to keep noise out of important habitats. My thesis project aims to provide such baseline information on harbor porpoise distribution patterns within a proposed marine energy development site. By filling knowledge gaps about where marine animals can be found and why certain habitats are critical, conservation efforts can be more directed and effective in reducing threats, such as ocean noise, to marine mammals.

Noise in our oceans is hard to observe, but its effects are visibly traumatic and well-documented. Unlike other sources of pollution to our oceans, (climate change, acidification, plastic pollution), which may take years, decades or centuries to dissipate, reducing ocean noise is rather straight forward. “Like a summer night when the fireworks end, our oceans can quickly return to their natural soundscape.” Ocean noise is a problem we can fix. To quiet the world’s waters, we all need to raise our voices so policy makers hear of this problem. That’s what Sonic Sea is all about: increasing awareness of this growing threat and building a worldwide community of citizen advocates to help us turn down the volume on undersea noise. If we sit back and do nothing to mitigate oceanic noise pollution, the problem will likely worsen. I highly suggest watching Sonic Sea.  Then, together, we can speak up to turn down the noise that threatens our oceans — and threatens us all.

Sonic Sea airs TONIGHT (6/8) for World Ocean’s Day on Animal Planet  at 10pm ET/PT!