""

Are you interested in reading about research in the field of online teaching and learning? Could you use some help in reading and digesting the results of various research reports in the field? Would you like to be able to identify the strengths and weakness of the study reports that you read? If you answered “yes” to one or more of these questions then you might be interested in the  Ecampus Research Unit’s new resource: the Report Reader Checklist.

The Report Reader Checklist includes a comprehensive set of criteria that offers you a guide to evaluate the quality and rigor of study reports. The checklist is intended to provide an overview of the foundational elements that should be included when reporting on the results of a study. You can apply each checklist criterion to a report to see whether that element has been included or not.

Here is an overview of the six areas of the checklist and the criterion in each area:

  1. Context: Does the report describe the larger purpose of the study? Does it explain the history or theoretical framework? Does the report include research goals and suggestions for further research?
  2. Methodology: Does the report have a methodology section? Is it clear how data were collected and analyzed? If the study used statistics, were they named? If coding was used, was the procedure described?
  3. Sample: Are the study participants described in detail? Is it clear how participants were recruited? Does the sample represent an appropriate level of diversity? Are subgroups appropriately identified?
  4. Reporting Results: Are all numbers in the report easy to comprehend? Is the “N” provided? Does the report identify missing data? Is it clear where study findings fit with the study’s purpose? Do data visualizations enhance your understanding of the results?
  5. Transparency: Are raw data included in the report? Are instruments or study protocols provided in the report? Are the authors clear about any conflicts of interest? Is the discussion rooted in data results?
  6. Reader Experience: Does the report use language that is easy to understand? Is the report ADA accessible? Does it include a summary or abstract? Is the study an appropriate length?

There are no “points” or “weighting” within the checklist, but if you find one area (e.g., “Context” or “Methodology”) that is missing several criteria within a report, that would indicate that a report is weaker in that particular area.

You can download a one-page PDF of the checklist or visit our supplementary website that provides more details on each of the criterion. Further, the site includes sample reports for each criterion so that you can learn more about areas that you are unfamiliar with.

We hope you find this resource useful for reading and evaluating reports in the field. We also hope it helps you make data-driven decisions for your work.

About the Oregon State University Ecampus Research Unit: The Oregon State University Ecampus Research Unit makes research actionable through the creation of evidence-based resources related to effective online teaching, learning and program administration. The OSU Ecampus Research Unit is part of Oregon State Ecampus, the university’s top-ranked online education provider. Learn more at ecampus.oregonstate.edu/research.

 

Could your online course use a boost? Is it lacking the secret spice that could be the difference between students coming away feeling satisfied rather than feeling like something was missing? Maybe there is a complex topic that students are consistently having a difficult time understanding or perhaps a particular concept that begs for more than a Power Point with some bland images collected from the internet. Well, perhaps the missing ingredient is an animation!

A brief history of animation…

In 1914, cartoonist Windsor McCay wowed audiences with his short animated film. Although not the first animation ever produced, Gertie the Dinosaur broke ground by employing new techniques, such as keyframes, loops, and the use of an appealing character, all of which would become standard practice in the creation of future animations. Interestingly, Gertie the Dinosaur also featured an interactive element where McCay would appear to give commands to Gertie which she would then carry out on screen.

Fast forward to 1928 where upstart Walt Disney Studios released the animated short Steamboat Willy and introduced the world to Mickey Mouse. Steamboat Willy also marked the first use of sound integrated onto film in an animation.

The 1930’s saw a boom in animation with Warner Brothers creating  its Merrie Melodies and Looney Tunes cartoons which featured a cast of outrageous characters including Bugs Bunny and Daffy Duck and arguably some of the most enduring pop-culture references ever. I admit, the Looney Tunes were an invaluable supplement to my formal elementary school education!

Disney upped the ante in 1937 with the release of the first feature length animated film Snow White and the Seven Dwarves. With Snow White, the Disney animators ventured into uncharted territory and proved that an animated film could be both visually stunning and a legitimate medium for storytelling. It was also around this time that the Disney animators planted the seeds of what would become the 12 principles of animation, a system of principles and techniques which have endured to this day and serve as the foundation in the creation of animation and motion graphics.

In the 1940’s and 50’s Disney continued to produce classics with films like Bambi and Fantasia while  another animator, Ray Harryhausen, perfected his “Dynamation” stop motion technique and brought fantastic monsters to life alongside live actors in films like The 7th Voyage of Sinbad and Jason and the Argonauts. Meanwhile, across the Pacific Ocean the Japanese were busy developing their own unique style of animation known as anime.

In 1960, The Flintstones became the first animated prime time television series and paved the way for animated programs like The Simpsons, the longest running series of all time.

In the 1970’s, animated cartoons dominated Saturday morning television. Although the content was mostly aimed at keeping kids engaged while mom and dad slept in, the power of animation’s potential as a learning tool was being explored in the form of short interludes during the commercial breaks. Most notable, Schoolhouse Rock combined animation and music in a powerfully memorable format to teach kids topics like grammar, history, math, and science. Meanwhile, Sesame Street  featured groundbreaking animations aimed at teaching through entertainment.

In the 1980’s, the computer arrived and ultimately revolutionized the way that animation was created as well as the way it looked. It was a clunky start but by 1995, Pixar studios released the first entirely computer animated feature Toy Story and there was no looking back. The omnipresence of the internet added fuel to the fire and allowed anyone with a laptop and a story to tell to publish their ideas to the world.

So, what does all of this have to do with online learning? Well, before the pedagogical red flag goes up and you think that animation is just for kids or that it’s too frivolous to occupy space in the world of higher education, read on.

We need look no further than the media that we consume on a daily basis to see how ubiquitous animation is. From television commercials, to the prevalence of the online “explainer” video, to online apps such as Headspace, which utilizes  animations to demystify the practice of mindfulness and meditation, animation is proving to be an effective medium to deliver information and get it to stick. Why wouldn’t we want to implement this powerful and available tool in online learning?

A well-crafted animation is a multi-sensory experience that can take a complex or abstract concept and explain it in a way that is concise, understandable, and engaging to the learner. Combining audio/verbal and visual information to illustrate difficult topics allows learners to associate images with concepts and has been proven to actually increase learner understanding and retention.

Additionally, animation can be used to visualize things that would otherwise be impossible or too cost prohibitive to depict with film, text, or still images. Things such as a biological or chemical processes that are invisible to the naked eye, or the ability to look beneath the earth to witness how a plants’ roots grow and utilize nutrients, can effectively be illustrated with animation. Larger scale events like planetary orbits, the hydrologic cycle, earthquake science, or the Russian Revolution can be represented in ways that are much more effective than using still pictures with arrows and text. Does the topic require a horse, a bug, a whale, a tractor, a piece of DNA? There’s no need to worry about the exorbitant costs and time required to train, catch, dive, drive, or dissect…simply animate it!  Animated characters, human, abstract, or animals can also add visual appeal and inject humor into a lesson. Finally, and arguably most important: animations are entertaining! If the student is entertained, they are more likely to be engaged in the subject matter and if they are engaged, they are more likely to retain information.

So what’s the next step? The Ecampus Custom Team is here to help you develop your animation. We’ll start by meeting with you to determine a learning objective and to brainstorm ideas for the project. You can view examples of our work to see if a particular style sparks your interest or, if you have a specific aesthetic in mind, we will work with you to refine it. Once we have pinned down a solid direction for the project, we’ll work with you to create a script. The script will serve as the narration for the animated video and is vital as it is an opportunity to distill the content down to its most potent elements. We prefer to keep the maximum length of the animation under 5 minutes and have found this to be most effective for the learner. When the script is finalized, you will come in to one of our studios to record the voice over narration. At this point, it’s full steam ahead and our team begins production on the animation! We’ll check in with you regularly with samples and progress reports to ensure an amazing final product.

-James Roberts, media team, Oregon State University Ecampus

References:

What’s An Image’s Value?

Image of postcard with a picture is worth a thousand words written on it.

Have you ever created an online course without using images? No?

That is not surprising as images can convey emotions, ideas, and much more. Their value is often captured in an old adage: A picture is worth a thousand words.

This article will discuss the value of images in online course design and how using visuals to accompany instruction via text or narration might contribute to or detract from an online learning experience. Let’s begin.

Multimedia Learning: Images, Text, and More

Online learning is a modern form of multimedia learning. Richard Mayer (2009) described multimedia learning as that learning that integrates the use of words and pictures. In traditional classrooms these learning resources might be experienced as: 

  • Textbooks:  Text and illustrations.
  • Computer-based lessons: Narration w/animation
  • Face-to-face slide presentations: Graphics and audio.

In online learning multimedia may also include:

  • eBooks: Text and digital images 
  • Video: Text, images, animations, coupled with audio.
  • Interactives: Maps, images, and video.
  • Digital Visual Representations: Virtual worlds and 3D models.
  • Screencasts: Software demos, faculty video feedback, and more.
  • Audio: Enhanced podcasts or narrated lectures.

These two short lists, although not exhaustive, demonstrates the importance of visual elements to multimedia based learning in online courses. There are many reasons why we might include any one of these multimedia learning experiences in an online course. For our purposes we will explore a bit more the instructional value of visuals to online learning.

So, how do words and pictures work together to help shape learning? Given that this is perhaps the most common learning object used in an online course it would seem useful to understand what may be considered this simple interpretation of visual literacy for learning (Aisami, 2015).

Visual Engagement Of A Learning Object

In a recent study of how people acquire knowledge from an instructional web page Ludvik Eger (2018) used eye tracking technology to examine a simple learning object composed of a title (headline), a visual element (i.e., diagram), and a box of written text. With no audio support for the learning object in this study, participants engaged the content via visual engagement alone. Results indicated that the majority of students started their learning process at the headline or the headline and visual element. The box of information, in text form, was the third part of the learning object engaged.

Within this context eye movement analysis indicates a learning process that is dependent upon a consistent visual flow. Purposely connecting the title, visual element and information text of a learning object may best reinforce learning. By doing this the course designer/instructor becomes a sort of cognitive guide either focusing or not-focusing learning via the meaning structure of the various learning object elements. In our case we want to use visual elements to support performance and achievement of learning tasks.

Choosing Visual Elements

In order to explore the choice of visual elements in an online learning experience it is helpful to understand how we process that experience from a cognitive science perspective.

Clark and Mayer (2016) describe that cognitive science suggests knowledge construction is based upon three principles: Dual channels, limited capacity and active processing. Let’s briefly examine what these are.

Dual channels:

People have two channesl of cognitive processing 1) for processing visual/pictorial material and 2) one for auditory/verbal material. See Figure 1.  below.

 

Model of cognitive model of multimedia learning.
Figure 1.: Model of the Cognitive Theory of Multimedia Learning

Limited capacity:

Humans can only process a few bits of pieces of information in each channel at the same time.

Active processing:

Learning occurs as people engage in cognitive processing during learning. This may include attending to relevant material, organizing that material into a coherent structure, and integrating that material with prior knowledge.

Due to the limits on any learner’s processing capability it is paramount that we select visual images that help manage the learning process. Our goal is to limit excessive processing that clutters the learning experience, build visual support for representing the core learning process, and provide visual support that fosters deeper understanding of the learning at hand. What does this mean in practice?

Managing Processing Via Image Use

Making decisions about image selection and use is a key to managing this learning process. Understanding the meaning of images to select is also key and is really a function of literacy in one’s field and visual literacy in general (Kennedy, 2013).

In practice we can use the following guidelines to make decisions about image use in multimedia-based online learning. 

  • Control Visual Elements – Too many images on a web page or slide may force extraneous cognitive processing that does not support the instructional objective. 
  • Select Visual Elements Carefully – Images difficult to discern are likely to negatively impact learning. Think about good visual quality, emotional and intellectual message of the image, information value, and readability.
  • Use Focused Visual Elements – Target selection of visual support to those images that represent the core learning material and/or provide access to deeper understanding of that core content.

Other Image Tips

Emotional Tone: Emotional design elements (e.g., visuals) can play important roles in motivating learners and achievement of learning outcomes (Mayer, 2013).

Interest: Decorative images may boost learner interest but do not contribute to higher performance in testing (Mayer, 2013). Use decorative images prudently so they do not contribute to extraneous learning processing (Pettersson & Avgerinou, 2016).

Challenge: Making image selections that contribute to a degree of confusion may challenge learnings to dive more deeply into core learning. This is a tenuous decision in that challenge in sense making may prove to foster excessive processing.

Access: Images must be presented in a format that is viewable to users to be practical. This involves an understanding of technical features of image formats, download capability, mobile use, and universal design techniques.

Final Thoughts

It is valuable to remember that visuals communicate non verbally. They are most effectively used when carefully selected and paired with text or audio narration. Visuals appeal to the sense of sight. They have different classifications and could be pictures, symbols, signs, maps graphs, diagrams, charts, models, and photographs. Knowing their form, meaning, and application is part of being a visually literate course developer or instructional designer.

Web Resources

References

Aisami, R. S. (2015). Learning Styles and Visual Literacy for Learning and Performance. Procedia – Social and Behavioral Sciences, 176, 538-545. doi:10.1016/j.sbspro.2015.01.508

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction : Proven guidelines for consumers and designers of multimedia learning. Retrieved from http://ebookcentral.proquest.com

Eger, L. (2018). How people acquire knowledge from a web page: An eye tracking study. Knowledge Management & E-Learning: An International Journal 10(3), 350-366.

Kennedy, B. (2013, November 19). What is visual literacy?. [Video file]. Retrieved from https://www.youtube.com/watch?time_continue=1&v=O39niAzuapc

Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171-173. doi:10.1016/j.learninstruc.2013.04.003

Rune Pettersson & Maria D. Avgerinou (2016) Information design with teaching and learning in mind, Journal of Visual Literacy, 35:4, 253-267, DOI: 10.1080/1051144X.2016.1278341

 

Credit: Embedded image by Kelly Sikkema on Unsplash.com

I pledge that I have acted honorably in completing this assessment.

There are two sides to the story of security of online assessments. On the one side, cheating does exist in online assessments. Examity’s president Michael London summarized five common ways students cheat on online exams:

  1. The old-school try of notes;
  2. The screenshot;
  3. The water break;
  4. The cover-up; and
  5. The big listen through devices such as Bluetooth headset (London, 2017).

Newton (2015) even reported the disturbing fact that “cheating in online classes is now big business”. On the other side, academic dishonesty is a problem of long history, both on college campuses and in online courses. The rate of students who admit to cheating at least once in their college careers has held steady at somewhere around 75 percent since the first major survey on cheating in higher education in 1963 (Lang, 2013). Around 2000, Many faculty and students believed it was easier to cheat in online classes (Kennedy, 2000), and about a third of academic leaders perceived online outcomes to be inferior to traditional classes (Allen & Seaman, 2011). However, according to Watson and Sottile (2010) and other comparative studies (Pilgrim & Scanlon, 2018), there is no conclusive evidence that online students are more likely to cheat than face-to-face students. “Online learning is, itself, not necessarily a contributing factor to an increase in academic misconduct (Pilgrim & Scanlon, 2018)”.

Since there are so many ways for students to cheat in online assessments, how can we make online assessments more effective in evaluating students’ learning? Online proctoring is a solution that is easy for instructors but adds a burden of cost to students. Common online proctoring service providers include ProctorU, Examity, Proctorio, Honorlock, to name just a few (Bentley, 2017).

Fortunately, there are other ways to assess online learning without overly concerned with academic dishonesty. Vicky Phillips (n.d.) suggested that authentic assessment makes it extremely difficult to fake or copy one’s homework. The University of Maryland University College has consciously moving away from proctored exams and use scenario-based projects as assessments instead (Lieberman, 2018). James Lang (2013) suggested smaller class sizes will allow instructor to have more instructor-to-students interaction one-on-one and limit cheating to the minimum therefore; Pilgrim and Scanlon (2018) suggest changing assessments to reduce the likelihood of cheating (such as demonstrating problem solving in person or via video, using plagiarism detection software programs like TurnItIn, etc.) , promote and establish a culture of academic integrity (such as honor’s code, integrity pledge), and supporting academic integrity through appropriate policies and processes. Kohnheim-Kalkstein (2006) reports that the use of a classroom honor code has been shown to reduce cheating. Kohnheim-Kalkstein, Stellmack, and Shilkey (2008) report that use of classroom honor code improves rapport between faculty and students, and increases feelings of trust and respect among students. Gurung, Wilhelm and Fitz (2012) suggest that an honor pledge should include formal language, state the specific consequences for cheating, and require a signature. For the honor pledge to be most effective, Shu, Mazar, Gino, Ariely, and Bazerman (2012) suggests including the honor pledge on the first page of an online assessment or online assignment, before students take the assessment or work on the assignment.

Rochester Institute of Technology (2014) ’s Teaching Elements: Assessing Online Students offer a variety of ways to assess students, including discussions, low-stake quizzes, writing assignments (such as muddiest point paper), and individual activities (such as staged assignments for students to receive ongoing feedback), and many other activities.

In summary, there are plenty of ways to design effective formative or summative assessments online that encourage academic honesty, if instructors and course designers are willing to spend the time to try out suggested strategies from literature.

References

Bentley, Kevin. (2017). What to consider when selecting an online exam proctoring service. Inside HigherEd. (June 21, 2017). Retrieved from https://www.insidehighered.com/digital-learning/views/2017/06/21/selecting-online-exam-proctoring-service on February 22, 2019.

Gurung, R. A. R., Wilhelm, T. M., & Filz, T. (2012). Optimizing honor codes for online exam administration. Ethics & Behavior, 22, 158–162.

Konheim-Kalkstein, Y. L. (2006). Use of a classroom honor code in higher education. Journal of Credibility Assessment and Witness Psychology, 7, 169–179.

Konheim-Kalkstein,Y. L., Stellmack, M. A., & Shilkey, M. L. (2008). Comparison of honor code and non-honor code classrooms at a non-honor code university. Journal of College & Character, 9, 1–13.

J.M. Lang. (2013). How college classes encourage cheating. Boston Globe. Retrieved from https://www.bostonglobe.com/ideas/2013/08/03/how-college-classes-encourage-cheating/3Q34x5ysYcplWNA3yO2eLK/story.html on February 21, 2019.

Lieberman, Mark. (2018). Exam proctoring for online students hasn’t yet transformed. Inside Higher Ed (October 10, 2018). Retrieved from https://www.insidehighered.com/digital-learning/article/2018/10/10/online-students-experience-wide-range-proctoring-situations-tech, on February 22, 2019.

Michael London. (2017). 5 Ways to Cheat on Online Exams. Inside Higher Ed (09/20/2017). Retrieved from https://www.insidehighered.com/digital-learning/views/2017/09/20/creative-ways-students-try-cheat-online-exams on February 21, 2019.

Derek Newton. (2015). Cheating in Online Classes is now big business. The Atlantic. Retrieved from https://www.theatlantic.com/education/archive/2015/11/cheating-through-online-courses/413770/ on February 21, 2019.

Vicky Phillips. (n.d.). Big Fat Online Education Myths – students cheat like weasels in Online Classes. GetEducated. Retrieved from https://www.geteducated.com/elearning-education-blog/big-fat-online-education-myths-students-cheat-like-weasels-in-online-classes/ on February 21, 2019.

Chris Pilgrim and Christopher Scanlon. (2018). Don’t assume online students are more likely to cheat. The evidence is murky. Retrieved from https://phys.org/news/2018-07-dont-assume-online-students-evidence.html on February 21, 2019.

Rochester Institute of Technology. (2014). Teaching Elements: Assessing Online Students. Retrieved from https://www.rit.edu/academicaffairs/tls/sites/rit.edu.academicaffairs.tls/files/docs/TE_Online%20Assessmt.pdf on February 21, 2019.

Shu, L. L., Mazar, N., Gino, F., Ariely, D., & Bazerman, M. H. (2012). Signing at the beginning makes ethics salient and decreases dishonest self-reports in comparison to signing at the end. PNAS, 109, 15197–15200.

George Watson. And James Sottile. (2010). Cheating in digital age: Do students cheat more in online courses? Online Journal of Distance Learning Administration 13(1). Retrieved from https://www.westga.edu/~distance/ojdla/spring131/watson131.html on February 21, 2019

First, let’s start by considering the characteristics of effective feedback in general. What comes to mind?

sound waves

Perhaps you hear in your head (in the authentically authoritative voice of a past professor) the words timely, frequent, regular, balanced, specific. Perhaps you recall the feedback sandwich–corrective feedback sandwiched between positive feedback. Perhaps you consider rubrics or ample formative feedback to be critical components of effective feedback. You wouldn’t be wrong.

As educators, we understand the main characteristics of effective feedback. But despite this fact, students are often disappointed by the feedback they receive and faculty find the feedback process time consuming, often wondering if the time commitment is worth it. As an instructional designer, I hear from faculty who struggle to get students to pay attention to feedback and make appropriate changes based on feedback. I hear from faculty who struggle to find the time to provide quality feedback, especially in large classes. The struggle is real. I know this because I hear about it all the time.

I’m glad I hear about these concerns. I always want faculty to share their thoughts about what’s working and what’s not working in their classes. About a year or two ago, I also started hearing rave reviews from faculty who decided to try audio feedback in their online courses. They loved it and reported that their students loved it. Naturally, I wanted to know if these reports were outliers or if there’s evidence supporting audio feedback as an effective pedagogical practice.

I started by looking for research on how audio feedback influences student performance, but what I found was research on how students and faculty perceive and experience audio feedback.

What I learned was that, overall, students tend to prefer audio feedback. Faculty perceptions, however, are mixed, especially in terms of the potential for audio feedback to save them time.

While the research was limited and the studies often had contradictory results, there was one consistent takeaway from multiple studies: audio feedback supports social presence, student-faculty connections, and engagement.

While research supports the value of social presence online, audio feedback is not always considered for this purpose. Yet, audio feedback is an excellent opportunity to focus on teaching presence by connecting one-to-one with students.

If you haven’t tried audio feedback in your classes, and you want to, here are some tips to get you started:

  1. Use the Canvas audio tool in Speedgrader. See the “add media comment” section of the Canvas guide to leaving feedback comments. Since this tool is integrated with Canvas, you won’t have to worry about upload and download times for you or your students.
  2. Start slow. You don’t have to jump into the deep end and provide audio comments on all of your students’ assignments. Choose one or two to get started.
  3. Ask your students what they think. Any time you try something new, it’s a good idea to hear from your students. Creating a short survey in your course to solicit student feedback is an excellent way to get informal feedback.
  4. Be flexible. If you have a student with a hearing impairment or another barrier that makes audio feedback a less than optimal option for them, be prepared to provide them with written feedback or another alternative.

Are you ready to try something new? Have you tried using audio feedback in your course? Tell us how it went!

References:

Image by mtmmonline on Pixabay.

Note: This post was based on a presentation given at the STAR Symposium in February 2019. For more information and a full list of references, see the presentation slide deck.

 

What is it?

Image of animator’s face in Character Animator program showing the facial data points used for animation creation.

Facial motion capture (Mo-Cap) is a process that uses a camera to map and track points on the user’s face. Software such as Adobe’sCharacter Animator derive data from the camera to animate cartoon characters in real time. This can greatly reduce the amount of time needed to create an animation and breathes subtle life into the character that would be otherwise difficult to achieve. Character Animator harnesses the power of the webcam to map several parts of the face to the respective parts of the character allowing it to record in real time. This includes your eyebrows, eyes, mouth, and head position. It also intakes audio to change mouth shapes to match what the user is speaking. In addition to the webcam, the user can operate their keyboard to trigger additional movements, effects, and walk motions. All these different aspects combine and give the character a personalized feel.

How does it help?

Image of character being rigged into a puppet showing the mesh and body tags.

Cartoon animations currently do not have a large presence in online learning. This is mostly because they take a long time to create and not everyone has had the resources to create them. Normally, character animation for cartoons requires drawing each frame or using a pose-to-pose process called key framing. With innovative technology such as Character Animator, it greatly reduces the barrier to create cartoon animations for online learning. Each motion of the face records instantly and gives the character life by adding subtle movements to the face and head. The bulk of the work is completed early on to draw, rig, and add triggers to the character, or in this case, the puppet. Once the puppet is set up to record, it is smooth sailing from there. All movements, audio, and facial expressions are recorded in one take; greatly reducing the amount of time for development. However, Character Animator allows you to choose which aspects you want to record, so you can record the eye movements one time, then the eyebrows another time. This is helpful for the perfectionists out there who cannot seem capture it all at once.

How does it work?

To create an animation using Character Animator, there are a handful of stages to complete. The first step is to draw the character in either Photoshop or Illustrator. Next, Character Animator imports the graphics and they are rigged into puppets to prepare for recording. This means the eyes, nose, mouth, etc. are tagged with their respective labels. Also during this time, you can create keyboard triggers. These are animations such as arm movements, walk motions, and more, that the pressing of certain keys on the keyboard triggers the character to perform. After the puppets are prepared, it is time to record. It does not have to be shot perfectly all at once; you can blend the best bits from different recordings into one masterpiece. The last step is to export the character’s recording and composite it into a story using video software such as Premiere Pro or After Effects. Once you achieve the flow of facial Mo-Cap, you can start cranking out animations faster than ever before.

Click Image to View Video

Below is a quick rundown of what it takes to set up a character and how to record it. At the end of the video, there is a sample of multiple characters in one scene.

What does the process look like?

 

Author: Zach Van Stone, Oregon State University Ecampus

game controller on work desk

What can instructional designers learn from video game design? This might seem like a silly question—what do video games have to do with learning? Why might we use video games as an inspiration in pedagogy? As instructional designers, faculty often come to us with a variety of problems to address in their course designs—a lack of student interaction, how to improve student application of a given topic, and many more. While there are many tools at our disposal, I’d like to propose an extra tool belt for our kit: what if we thought more like game designers?

Video games excel at creating engaging and motivating learning environments. Hold on a minute, I hear you saying, video games don’t teach anything! In order for games to onboard players, games teach players how to navigate the “physical” game world, use the game’s controls, identify the rules of what is and is not allowed, interpret the feedback the game communicates about those rules, identify the current outcome, form and execute strategies, and a large variety of other things depending on the game, and that’s usually just the tutorial level!

What is the experience like in a learning environment when students begin an online course? They learn how to navigate the course site, use the tools necessary for the course, identify the assessment directions and feedback, identify the short-term and long-term course outcomes, learn material at a variety of different learning levels, and large variety of other things depending on the class, and that’s usually just the first week or two! Sound familiar? What are some things that video games do well during this on-boarding/tutorial to setup players for success? And how might instructional designers and faculty use these elements as inspiration in their classes?

The following list includes nine tips on how game design tackles tutorial levels and how these designs could be implemented in a course design:

  1. Early tasks are very simple, have low stakes, and feedback for these tasks is often very limited—either “you got it” or “try again”. Consider having some low-stakes assignments early in the course that are pass/fail.
  2. If negative feedback is received (dying, losing a life, failing a level, etc.), it is often accompanied by a hint, never an answer. If you have a MCQ, do not allow students to see the correct answer, but consider adding comments to appear if a student selects an incorrect answer that offers hints.
  3. If negative feedback is received, the game does not move on until the current outcome is achieved. Allow multiple attempts on quizzes or assignments and/or setup prerequisite activities or modules.
  4. Game levels allow for flexible time—different players complete levels at different rates. Design tasks with flexible due dates. Many courses already allow some flexibility for students to complete activities and assessments within weekly modules—can that flexibility be extended beyond a weekly time frame?
  5. Tutorial quests usually have predetermined and clearly communicated outcomes. All objectives are observable by both the game and the player. Create outcomes and rubric conditions/language that are self-assessable, even if the instructor will complete the grading.
  6. Tasks and game levels are usually cumulative in nature and progress using scaffolded levels/activities. Consider breaking up large assignments or activities into smaller, more cumulative parts.
    • For example, the first quest in The Elder Scrolls V: Skyrim is a great example for Nos. 5 and 6 above. It consists of four required objectives and two optional objectives:
      • Make your way to the keep.
      • Enter the Keep with Hadvar or Ralof.
      • Escape Helgen.
      • Find some equipment (Hadvar) / Loot Gunjar’s body (Ralof).
        • Optional: Search a barrel for potions.
        • Optional: Pick the lock of a cage.
  7. There are varying degrees of assumed prior knowledge, but no matter what, everyone participates in the tutorial levels. They are not optional. Consider saving optional “side quests” for later in a course or having an introductory module for everyone, regardless of skill level.
  8. The “tutorial” process usually ends when all skills have been introduced, but some games continue to add new skills throughout, inserting mid-game tutorials when necessary. Return to some of the design ideas on this list if a course introduces new topics throughout.
  9. After a requisite number of skills are mastered and players are able to fully play the game, the only major changes in design are increases in difficulty. These changes in difficulty are usually inline with maintaining a flow state by balancing the amount of challenge to the skill level of the player. As course material and activities increase in difficulty, make sure there are ample opportunities for students to develop their abilities in tandem.

Games are a great model for designing engaging learning experiences, with significant research in psychology and education to back it up. By understanding how games are designed, we can apply this knowledge in our course designs to help make our courses more motivating and engaging for our students.

Additional Resources

Want to know more about the psychology of why these designs work? Start with these resources:

For Ecampus students, online education offers accessibility, flexibility and asynchronous learning opportunities when attending courses on campus may not be possible. University-based distance education has experienced steady growth over the past 20 years. A 2018 study found that 31.6% of all students are taking at least one online course (Seaman, Allen, & Seaman, 2018). But, although the growth of online courses has improved access to education, it hasn’t necessarily coincided with a growth of relevant, engaging, and innovative learning experiences. While many educators and online course designers recognize the value of project-based learning, concerns over the skills and the time required to develop authentic projects limits their use in online classes. This blog post will look at ways Constructionism, the theory that learning is most effective when students make authentic artifacts to build knowledge, can be applied to online higher education.

Seymour Papert working with a children's turtle robot.
Seymour Papert” by Matematicamente.it, Wikimedia Commons is licensed under CC BY 3.0

Constructionism is a term first defined by Seymour Papert, an MIT scholar, educational theorist, and an early champion of using computers in education (MIT Media Lab, 2016). Papert built on the earlier work of philosopher Jean Piaget. Piaget’s similarly named Constructivist theory proposed that children learn not as information is transmitted to them or in response to stimulation, but through experiences in which they are given the opportunity to “construct meaning.” While Papert agreed, he expanded on these ideas and slightly modified the name. He believed that constructing knowledge was more effective when it was done “in the world.”

Papert’s Constructionism theory held that students learned best when given an opportunity to construct their own meaning by creating meaningful artifacts for an authentic audience. He felt that by creating something to share, something that “can be shown, discussed, examined, probed, and admired” student motivation to learn was increased (Papert, 1993, p. 143).

Lego Mindstorms Robot
Lego Mindstorms” by Bernard Goldbach is licensed under CC BY 2.0

Papert illustrated this theory working with elementary school aged children to program Legos. His work in education inspired the development of the Lego Mindstorms line, that now has widespread use in K-12 STEM educational programs and robotic competitions. Papert developed a curriculum based on his Constructionism theory for elementary school children in classrooms. But how can these same principles, those of learning by doing, be applied to adults earning college degrees online?

Creating effective online learning requires new practices. Earning an undergraduate degree in Oregon represents roughly 5400 hours of schoolwork.1 But what does that look like? For an online student, this time is spent going through the learning materials online and completing the related activities and assessments. The majority of online instructional materials are designed for passive consumption. Slide-based presentations and PDF articles are being embedded into Learning Management Systems (LMS’s), and whiteboards and lectures are being videotaped and exported to YouTube. To demonstrate their understanding of the material, students are asked to post in discussion forums and to write papers. Imagine completing 5400 hours of these types of activities to earn a degree.

two glasses of lemonade
Tray of Lemonade by Charity Beth Long on Unsplash

Face-to-face interaction with an instructor and classmates can inspire effort that is more difficult to motivate in virtual instruction. Research findings by Constructivist thinkers have found that in order to facilitate an active learning experience for students, they must be doing something besides passively reading or listening to lecture content. “Teachers can’t “pour” knowledge into the heads of students as they might pour lemonade into a glass; rather, students make their own lemonade” (Ormrod, 2016, pp. 158–159). Students are more engaged when they are presented with the challenge of analyzing, synthesizing, evaluating, and presenting information. They retain more when they participate in their own learning.

There is now widespread availability of multimedia tools that can enable students to create content that reflects on what they are learning. These include podcasts, skits, videos, and narrated presentations. They can create timelines, online portfolios, or interactive maps. Assignments like these usually require higher order thinking skills – asking students to analyze or synthesize what they have learned and share it with an audience.

I had the opportunity to create multimodal projects several times while earning my master’s degree at Western Oregon. I created numerous digital stories. I used them to introduce myself to my online classmates, to create tutorials, and to share experiences raising my children after my husband passed away (see my first digital story, Suck it up Buttercup). In doing these projects, I realized that I had a story to tell – and one to which I needed to add my voice. They were powerful and engaging learning experiences for me. I became comfortable with the technology required to create the projects, I practiced writing, editing, speaking and presentation skills. In the process of sharing a bit of myself with my classmates and instructors I felt connected to them in a way that I had not before as a distance learner. I was proud of the projects I created. I put long hours into them and continued to edit them after they had been submitted and graded because I wanted to improve them and share them with a broader audience. I have never done this with a discussion forum post or research paper. One of my course presentations, in conjunction with an online portfolio I created for a different class, was used to interview for the job I now hold as an Instructional Designer at Oregon State University.

Technology-based assessment projects should only be introduced to curriculum intentionally. Assignments should be selected carefully to align with the learning outcomes of the course and should be appropriate for the level of the course. Projects should be challenging, but doable and relevant to the learner’s goals and outcomes developed at the beginning of course design.

While introducing Constructionism into online courses using technology-based tools may move away from traditional teaching methods, it does not mean students will not develop the same types of core skills expected from an undergraduate education. Judith V. Boettcher holds a Ph.D. in education and cognitive psychology and owns the website “Designing for Learning.” In a 2011 article on assessment alternatives to writing papers, Boettcher asserted that the skills required for written assignments: critical thinking, analysis, knowledge of the subject, assembly of ideas, and information processing were still exercised and developed when the output was a different type of product (Judith V. Boettcher, 2011). Her point is well taken.

Consider what it takes for a student to create a video documentary, script a podcast, or even develop a narrated presentation. Many of the skills required to write a research paper, essay or thoughtful discussion post are also present in assignments that leverage technology for creation. The student still has to enter the conversation about their subject area with thoughtful and well-developed contributions. But with the wealth of tools now available, there are many ways for them to share their work. Boettcher also noted that looking for ways to leverage technology in assessment strategies has the additional benefit of reducing the burden of reading “endless numbers of papers.”

Many instructors worry that learning curves associated with new tools will interfere with the ability to absorb the course content. However, when probing faculty, often it is their own unfamiliarity with technology that is at the root of this fear. It is worth experimenting before presupposing that learning how to build a website or create an animated presentation or video will be too hard.

Student portfolio on the new google sitesRecent advances in technology have produced endless collections of websites and apps that have a very low barrier to creating visually stunning multimedia content. Many of them are free or low cost, particularly to educators. As an example, the new Google Sites released in 2018 makes it easy for those with no web development experience to create and publish a website including videos, pictures, documents and audio files. Users can apply themes, chose colors and change font styles to personalize the site. As users add content to templated page layouts, they are automatically aligned and sized based on best design practices. Google Sites has the added advantage for those concerned about privacy of allowing content to be restricted to users on a school’s domain or to invited individuals.

In contrast to many university faculty instructors who are new to multimedia content creation tools, this generation of students has grown up online. They use online tools for social interactions, at work, for school, and to pursue their personal interests. Their research projects start with an online search, so much so that looking for information has become synonymous with the name of the world’s most popular internet search engine. “Let me Google that.” If a student has questions about how to use a tool to create a presentation or edit a video, they will do just that. More likely however, they will just start trying to use it, building useful, employable skills as they do so.

In 2013, Google commissioned a study that reinforced the value of employees willing to think for themselves, experiment, and explore new ways of sharing information. Writing about this study in the Washington Post, Cathy Davidson (Cathy Davidson, 2017), author of “The New Education: How to revolutionize the University to Prepare Students for a World in Flux,” said that the study showed that workplace success is predicted largely by skills such as communication, critical thinking, problem solving, curiosity and making connections across complex ideas. In the New Media Consortium 2017 Horizon Report on Higher Education they reiterated the findings of the Google study: “Real-world skills are needed to bolster employability and workplace development. Students expect to graduate into gainful employment. Institutions have a responsibility to deliver deeper, active learning experiences and skills-based training that integrate technology in meaningful ways” (Becker et al., 2017). Both of these studies reflect the importance that today’s students leave school knowing how to collaborate, question, and engage – skills not necessarily developed through passive consumption of content in online courses. In other words, a willingness to experiment, the ability to think creatively, and communication and presentation skills – all of those traits exercised when learners are asked to create and share projects demonstrating new knowledge – are those that will help them during a job search. Not only that, but some of these artifacts can be used while applying for and interviewing for work. Presentations and online portfolios can be shared with prospective employers. Prospective job applicants cannot, however, take LMS discussion posts to an interview.

Building skills and creating artifacts that will help students at work or to find work is motivating for adult learners. Adult enrollment in online degree programs is primarily driven by their career aspirations (Jordan Friedman, 2017). Numerous studies find higher student satisfaction and retention in online higher education courses when there is a link to a professional application. Student are more motivated to learn when the relevancy and applicability of activities to their chosen field is obvious (Ke, 2010). This reflects both pedagogical best practices (Luna Scott, 2015), and the fact that the majority of online students are hoping to develop skills that will support their careers. These studies  found that the ability to apply knowledge to real-world applications consistently contributed to a learner’s positive experience.

Student hands on a laptop
OSU Ecampus image of an Online Learner

An increasing number of students are turning to online education to earn their degrees. As educational costs rise, many students are doing this out of necessity while juggling school, work, and family commitments. Educators need to look for ways to create relevant and engaging forms of assessment for these learners. There is an over-reliance on passive consumption of learning materials and text-based assignments. But students, when given the choice to develop projects of their own design and based on their own interests, are likely to retain more information and walk away with modern career skills.

The lessons Papert learned by allowing elementary school children to build and program Lego structures can and should be carried over to online higher education. Let students build something. Let them share it with an authentic audience. Leverage technology that enables students in online classes to use knowledge, rather than just store it. This type of assessment allows students to find their voice and excites them about their coursework. There are numerous options that instructors can include in an online course to foster this type of learning.

Footnote

  1. Undergraduate students attending Oregon universities must complete a minimum of 180 credit hours. Guidelines, like those offered by the Oregon State University Registrar’s office, suggest that students should expect three hours of work per week for each credit hour (Oregon State University, 2018). Over the course of a ten-week quarterly term, like those of Oregon’s public universities, 180 credits at 12 credits a term would require 36 hours of work a week and take 15 terms, or 150 weeks. 150 weeks X 36 hours of work/per week is 5400 hours.

References

Image of mountaineers with quote by John Dewey.

What is Experiential Learning?

You may have heard the terms experiential education and experiential learning. Both terms identify learning through experience as a foundational understanding. However, experiential learning is associated with individual learning.

Traditionally experience-based learning in higher education has been presented as educational opportunities complimentary to classroom instruction. These experiences might include clinical experiences, cooperative education experiences, apprenticeships, fellowships, field work, volunteerism, study abroad, practicum and internships, service learning, and student teaching experiences. These types of learning experiences are offered in and across many different disciplines (Giesen, 2012). These familiar experiential education programs demonstrate the value of individual experiential learning. But, the question remains: Is experiential learning a viable approach for online instruction?

Understanding the potential for experiential learning for online courses turns upon recognizing experiential learning as a process. The experiential learning process has been described as a cycle of learning (Kolb and Kolb, 2018). The model below illustrates The Experiential Learning Cycle.

Model of experiential learning showing sequence of Concrete Experience, Reflective Observation, Abstract Conceptualization, and Active Experimentation.

Experiential learning is understood as constructive pedagogy approach that is highly student centered. The Experience Learning Cycle begins with a concrete experience of some kind. Commonly we think of this as a real world event. That experience is followed by reflective observation of the experience, abstract conceptualization of what was learned, and the application of new learning via active experimentation. That experimentation is integrated as part of the next concrete experience.

The interactive and progressive nature of the experiential learning cycle is considered a driver of personal growth and development. The dialectics between concrete experience and abstract conceptualization as well as reflective observation and active experimentation are theorized to drive motivation for learning. 

Online Experiential Learning In Practice 

Problem-based learning, case-based learning, and  project-based learning are examples of design models that may include learning via experience in the real world (Bates, 2014). These models are often used as a way of bringing engagement into online instruction. So, if you have been incorporating these models of learning in an online course you are engaged at some level with experiential learning. But, what if you wanted to design an experiential learning assignment that does not fall within one of these models?  What might that look like?

Let’s examine the application of the experiential learning cycle to an online learning experience in a course recently offered through Ecampus at Oregon State University. The asynchronous course, Introduction to Organic Agriculture Systems, is a survey style course with an enrollment of students from Oregon and more distant.

Let’s step through The Cycle of Experiential Learning with an assignment from this course as our sample context. Hopefully it will reveal some insights into both the process of experiential learning and its practice.

1. Concrete Experience

The concrete experience for this course was an organic scavenger hunt assignment that was to be completed in the first week of the course. Although the overt activity of was a guided scavenger hunt the learning experience focus was to begin to learn systems thinking in organic agriculture. This is important to identify, as it is the authentic learning goal of the experiential learning.

As the professor framed this assignment: “This introductory activity will provide you the opportunity to explore organic availability, marketing, and farming in your community.”This concrete experience is the direct experience of organics in the student’s community.

The objectives of the scavenger hunt were to:

  • Identify organic products and marketing techniques that differentiate organic from conventional products
  • Conduct a survey of organic availability in your local store and region
  • Participate in hands-on exploration of different components of the organic system

Students were provided with a detail scavenger hunt instruction set and told to complete there first part of the assignment in a local store using an organic scavenger hunt questionnaire-work sheet. Time estimates for completion of the scavenger hunt was up to three hours at the store site. Completed work sheets were turned in to the instructor.

The key to this assignment is the real life exploration of the local organic system. Although this will be elaborated on in subsequent weeks of the course, this concrete experience will become a touchstone students can reference as they build new knowledge and skills in systems thinking in organic agriculture.

2. Reflective Observation

Part 2 of the scavenger hunt assignment includes independent student work guided by questions that ask about the presence of organic farms in the student’s area, type of organic farms, scale of the farms and evidence of their independent research work.

This element of the assignment encourages students to search for, identify, and reflect upon gaps in the local organic system in their own backyard. This work encourages students to reflect upon their own concrete experience, the quality of their work, and its linkage to understanding systems thinking.

3. Abstract Conceptualization

In week three of the course students were assigned a course discussion to share their findings from the scavenger hunt with peers. Here they compare and contrast their scavenger hunt findings and observations. In particular, students were asked to connect the social, environmental and economic dimensions of sustainability in organic agriculture to their observations taken from the scavenger hunt experience. Additionally students were asked to review other student work from different locals and explore common understandings about organic agriculture systems.

The value of this exercise from an experiential learning perspective is the application of concrete experience to more abstract concepts described by others or found in other agricultural regions. This provides opportunities for the re-conceptualizing of prior experiences with the goal of expanding on the process of organic agriculture systems thinking.

4. Active Experimentation

The Cycle of Experiential Learning rounds out with planning and applying new learning about organic agriculture systems thinking to a future concrete experience. Abstract conceptualization completed in the previous discussion will contribute to the formulation of new questions and ways of examining a local organic agriculture system. Students will likely apply these ideas to ongoing organic agriculture systems thinking in the course. In this way prior reflective observation becomes the root of new questions and predicted results for the next learning experience in organic agriculture systems thinking.
 

Final Thoughts

The final project of this course is the production of an organic systems map that explains the relationships between organic system stages (i.e., production, processing, distribution/marketing, consumption, and waste) and the dimensions of sustainability (ie. social, environmental, and economic).

In order to complete the final project students learn a great deal between their initial scavenger hunt and the final project. Their original concrete experience in systems thinking will likely inform decisions about how to re-apply new organic agriculture systems thinking.

The experiential learning assignment we just examined only works if students perceive that moving through the cycle of experiential learning addresses an authentic learning need. As the course is focused on introducing organic agriculture systems the idea of learning systems thinking makes sense. It captures the fundamental truth of what is expected to be learned (Jacobson, 2017) making the learning appropriate.

What Now?

As you explore the possibility of using experiential learning in your online course it is valuable for you to first consider formulating answers to a number of questions.

  • What is the authentic learning needed?
  • What concrete experience provides students with access to that learning? 
  • How will students carry that concrete experience through the cycle of experiential learning?
  • How will you provide the opportunity for concrete experiences for remote learners in a way that fosters individual learning and contributes to large scale learning in the course?

As you explore experiential learning for your online course revisit the model shared in this article. For help in this process contact your Ecampus instructional designer. They can help focus the key questions and suggest instructional strategies and tools to help you achieve your online experiential learning goals.

 

References

Bates, T. (2014). Can you do experiential learning online? Assessing design models for experiential learning. Retrieved from https://www.tonybates.ca/2014/12/01/can-you-do-experiential-learning-online-assessing-design-models-for-experiential-learning/

Dewey, J. (1938). Experience and Education. New York: Simon and Schuster.

Giesen, J. (2012). Experiential Learning. Faculty Development and Instructional Design Center, Northern Illinois University. Retrieved from https://www.niu.edu/facdev/_pdf/guide/strategies/experiential_learning.pdf

Jacobson, J. (2017). Authenticity in Immersive Design for Education. In Virtual, Augmented, and Mixed Realities (Ch 3). Singapore, Springer Nature.
Retrieved from https://link.springer.com/book/10.1007%2F978-981-10-5490-7

Kolb, A. & Kolb, D. (2018). Eight important things to know about The Experience Learning Cycle. Australian Educational Leader, 40 (3), 8-14.


Experiential Education Resources

Association for Experiential Education
http://www.aee.org/ 

Journal of Experiential Education
http://www.aee.org/publications/jee 

Experience Based Learning Systems Inc.
https://learningfromexperience.com

Experiential Learning & Experiential Education
http://www.wilderdom.com/experiential/

Great places to find answers to this question are the Lilly Conferences on Evidence-Based Teaching and Learning held annually at six sites from coast to coast. These conferences invite participants to engage in lively dialogue about the scholarship of teaching and learning, share best practices and hone teaching skills. Lilly Conferences are not specific to any course modality; they cover classroom, hybrid and online teaching. I found the three topics from August’s Lilly – Asheville Conference of particular interest: alternative approaches to traditional grading, faculty and student empathy, and strategies to enhance the effectiveness of lectures.

Alternative Grading Systems

Michael Palmer,  director of the University of Virginia’s Center for Teaching Excellence, challenged conference attendees to address the question “How does grading influence learning?” He then encouraged examination of alternative approaches to traditional grading practices, and explained specifications (“specs”) grading, which he personally uses. Briefly, specifications grading involves:

  • Grading assignments and assessments on a satisfactory/unsatisfactory basis, where mastery (passing) is set at a “B” level or better.
  • Bundling assignments and assessments together and allowing students to select these “bundles” based on the final course grade they are seeking. Bundles are aligned with specific course learning outcomes. Higher final grades require students to do more work and/or more challenging work.
  • Building in flexibility by giving students a few tokens at the outset that they can trade in for an extension on an assignment or an opportunity to revise/redo an unsatisfactory assignment.

Advocates of specs grading tout its effectiveness in motivating and engaging students while restoring rigor, providing actionable feedback (Palmer gives audio feedback) and supporting deep learning. To learn more, see Linda Nilson’s book Specifications Grading. Regarding ways to provide feedback that enhances learning in online courses, see Wanted: Effective Instructor Feedback.

Empathy and Student Success

Katherine Rowell of Ohio’s Sinclair Community College spoke eloquently about “The Importance of Teacher and Student Empathy in Student Success.”

  • She noted that positive faculty-student relationships are a principal factor predicting student success. In fact, the 2014 Gallup-Purdue survey found that college graduates were far more likely to be engaged in their work and thriving in key areas of well-being if they had one or more positive relationships with faculty.
  • Rowell encouraged the audience to learn more about the role that empathy plays in student success, and to look at how empathy—by both instructors and students—is manifest in the college classroom, including the online classroom.
  • She recommended Christopher Uhl and Dana Stuchul’s book Teaching as If Life Matters which encourages teachers to nurture students in ways that make learning beneficial for a more meaningful life. In this regard, OSU Business instructor Nikki Brown’s recent post in this blog on meeting students where they are is a excellent place to start.

Improving Lectures

Todd Zakrajsek of UNC-Chapel Hill presented evidence-based strategies to enhance lecture effectiveness. His message can be applied to asynchronous online learning as well as to on-campus courses:

  • Lectures and active learning are not mutually exclusive. Using lectures, including short online lectures, plus active learning can reach more learners better than using either technique in the absence of the other. Think of strategies to get learners to interact with the lecture content!
  • “We have to stop thinking there’s only one kind of lecture.” Just as there are many varieties of active learning, there are multiple kinds of lecturing!  The classic college lecture model is continuous expository lecturing, which can effectively stifle student engagement when delivered non-stop in one-hour doses! It’s useful to consider how other approaches such as case-study, discussion-framing, and problem-solving lectures can be used in online and hybrid courses.
  • We all benefit from examining the research on how learners learn, and applying this knowledge  to inform course development and teaching, including lecture design. For more on this, see The New Science of Learning, co-authored by Zakrajsek and Terry Doyle. Also consider meeting students where they are.

What are your experiences with these topics: Have you explored alternative grading systems? How do you use empathy in your teaching? What are some strategies you use to improve lecture effectiveness and incorporate active learning? Please share your ideas here.