One of the most common questions I get as an Instructional Designer is, “How do I prevent cheating in my online course?” Instructors are looking for detection strategies and often punitive measures to catch, report, and punish academic cheaters. Their concerns are understandable—searching Google for the phrase “take my test for me,” returns pages and pages of results from services with names like “Online Class Hero” and “Noneedtostudy.com” that promise to use “American Experts” to help pass your course with “flying grades.” 1 But by focusing only on what detection measures we can implement and the means and methods by which students are cheating, we are asking the wrong questions. Instead let’s consider what we can do to understand why students cheat, and how careful course and assessment design might reduce their motivation to do so.

A new study published in Computers & Education identified five specified themes in analyzing the reasons students provided when seeking help from contract cheating services (Amigud & Lancaster, 2019):

  • Academic Aptitude – “Please teach me how to write an essay.”
  • Perseverance – “I can’t look at it anymore.”
  • Personal Issues – “I have such a bad migraine.”
  • Competing Objectives – “I work so I don’t have time.”
  • Self-Discipline – “I procrastinated until today.”

Their results showed that students don’t begin a course with the intention of academic misconduct. Rather, they reach a point, often after initially attempting the work, when the perception of pressures, lack of skills, or lack of resources removes their will to complete the course themselves. Online students may be more likely to have external obligations and involvement in non-academic activities. According to a 2016 study, a significant majority of online students are often juggling other obligations, including raising children and working while earning their degrees (Clinefelter & Aslanian, 2016).

While issues with cheating are never going to be completely eliminated, several strategies have emerged in recent research that focuses on reducing cheating from a lens of design rather than one of punishment. Here are ten of my favorite approaches that speak to the justifications identified by students that led to cheating:

  1. Make sure that students are aware of academic support services (Yu, Glanzer, Johnson, Sriram, & Moore, 2018). Oregon State, like many universities, offers writing help, subject-area tutors and for Ecampus students, a Student Success team that can help identify resources and provide coaching on academic skills. Encourage students, leading up to exams or big assessment projects, to reach out during online office hours or via email if they feel they need assistance.
  2. Have students create study guides as a precursor assignment to an exam—perhaps using online tools to create mindmaps or flashcards. Students who are better prepared for assessments have a reduced incentive to cheat. Study guides can be a nongraded activity, like a game or practice quiz, or provided as a learning resource.
  3. Ensure that students understand the benefits of producing their own work and that the assessment is designed to help them develop and demonstrate subject knowledge (Lancaster & Clarke, 2015). Clarify for students the relevance of a particular assessment and how it relates to the weekly and larger course learning outcomes.
  4. Provide examples of work that meets your expectations along with specific evaluation criteria. Students need to understand how they are being graded and be able to judge the quality of their own work. A student feeling in the dark about what is expected from them may be more likely to turn to outside help.
  5. Provide students with opportunities throughout the course to participate in activities, such as discussions and assignments, that will prepare them for summative assessments (Morris, 2018).
  6. Allow students to use external sources of information while taking tests. Assessments in which students are allowed to leverage the materials they have learned to construct a response do a better job of assessing higher order learning. Memorizing and repeating information is rarely what we hope students to achieve at the end of instruction.
  7. Introduce alternative forms of assessment. Creative instructors can design learning activities that require students to develop a deeper understanding and take on more challenging assignments. Examples of these include recorded presentations, debates, case studies, portfolios, and research projects.
  8. Rather than a large summative exam at the end of a course, focus on more frequent smaller, formative assessments (Lancaster & Clarke, 2015). Provide students with an ongoing opportunity to demonstrate their knowledge without the pressure introduced by a final exam that accounts for a substantial portion of their grade.
  9. Create a course environment that is safe to make and learn from mistakes. Build into a course non-graded activities in which students can practice the skills they will need to demonstrate during an exam.
  10. Build a relationship with students. When instructors are responsive to student questions, provide substantive feedback throughout a course and find other ways to interact with students — they are less likely to cheat. It matters if students believe an instructor cares about them (Bluestein, 2015).

No single strategy is guaranteed to immunize your course against the possibility that a student will use some form of cheating. Almost any type of assignment can be purchased quickly online. The goal of any assessment should be to ensure that students have met the learning outcomes—not to see if we can catch them cheating. Instead, focus on understanding pressures a student might face to succeed in a course, and the obstacles they could encounter in doing so. Work hard to connect with your students during course delivery and humanize the experience of learning online. Thoughtful design strategies, those that prioritize supporting student academic progress, can alleviate the conditions that lead to academic integrity issues.


1 This search was suggested by an article published in the New England Board of Higher Education on cheating in online programs. (Berkey & Halfond, 2015)

References

Amigud, A., & Lancaster, T. (2019). 246 reasons to cheat: An analysis of students’ reasons for seeking to outsource academic work. Computers & Education, 134, 98–107. https://doi.org/10.1016/j.compedu.2019.01.017

Berkey, D., & Halfond, J. (2015). Cheating, student authentication and proctoring in online programs.

Bluestein, S. A. (2015). Connecting Student-Faculty Interaction to Academic Dishonesty. Community College Journal of Research and Practice, 39(2), 179–191. https://doi.org/10.1080/10668926.2013.848176

Clinefelter, D. D. L., & Aslanian, C. B. (2016). Comprehensive Data on Demands and Preferences. 60.

Lancaster, T., & Clarke, R. (2015). Contract Cheating: The Outsourcing of Assessed Student Work. In T. A. Bretag (Ed.), Handbook of Academic Integrity (pp. 1–14). https://doi.org/10.1007/978-981-287-079-7_17-1

Morris, E. J. (2018). Academic integrity matters: five considerations for addressing contract cheating. International Journal for Educational Integrity, 14(1), 15. https://doi.org/10.1007/s40979-018-0038-5

Yu, H., Glanzer, P. L., Johnson, B. R., Sriram, R., & Moore, B. (2018). Why College Students Cheat: A Conceptual Model of Five Factors. The Review of Higher Education, 41(4), 549–576. https://doi.org/10.1353/rhe.2018.0025

What’s An Image’s Value?

Image of postcard with a picture is worth a thousand words written on it.

Have you ever created an online course without using images? No?

That is not surprising as images can convey emotions, ideas, and much more. Their value is often captured in an old adage: A picture is worth a thousand words.

This article will discuss the value of images in online course design and how using visuals to accompany instruction via text or narration might contribute to or detract from an online learning experience. Let’s begin.

Multimedia Learning: Images, Text, and More

Online learning is a modern form of multimedia learning. Richard Mayer (2009) described multimedia learning as that learning that integrates the use of words and pictures. In traditional classrooms these learning resources might be experienced as: 

  • Textbooks:  Text and illustrations.
  • Computer-based lessons: Narration w/animation
  • Face-to-face slide presentations: Graphics and audio.

In online learning multimedia may also include:

  • eBooks: Text and digital images 
  • Video: Text, images, animations, coupled with audio.
  • Interactives: Maps, images, and video.
  • Digital Visual Representations: Virtual worlds and 3D models.
  • Screencasts: Software demos, faculty video feedback, and more.
  • Audio: Enhanced podcasts or narrated lectures.

These two short lists, although not exhaustive, demonstrates the importance of visual elements to multimedia based learning in online courses. There are many reasons why we might include any one of these multimedia learning experiences in an online course. For our purposes we will explore a bit more the instructional value of visuals to online learning.

So, how do words and pictures work together to help shape learning? Given that this is perhaps the most common learning object used in an online course it would seem useful to understand what may be considered this simple interpretation of visual literacy for learning (Aisami, 2015).

Visual Engagement Of A Learning Object

In a recent study of how people acquire knowledge from an instructional web page Ludvik Eger (2018) used eye tracking technology to examine a simple learning object composed of a title (headline), a visual element (i.e., diagram), and a box of written text. With no audio support for the learning object in this study, participants engaged the content via visual engagement alone. Results indicated that the majority of students started their learning process at the headline or the headline and visual element. The box of information, in text form, was the third part of the learning object engaged.

Within this context eye movement analysis indicates a learning process that is dependent upon a consistent visual flow. Purposely connecting the title, visual element and information text of a learning object may best reinforce learning. By doing this the course designer/instructor becomes a sort of cognitive guide either focusing or not-focusing learning via the meaning structure of the various learning object elements. In our case we want to use visual elements to support performance and achievement of learning tasks.

Choosing Visual Elements

In order to explore the choice of visual elements in an online learning experience it is helpful to understand how we process that experience from a cognitive science perspective.

Clark and Mayer (2016) describe that cognitive science suggests knowledge construction is based upon three principles: Dual channels, limited capacity and active processing. Let’s briefly examine what these are.

Dual channels:

People have two channesl of cognitive processing 1) for processing visual/pictorial material and 2) one for auditory/verbal material. See Figure 1.  below.

 

Model of cognitive model of multimedia learning.
Figure 1.: Model of the Cognitive Theory of Multimedia Learning

Limited capacity:

Humans can only process a few bits of pieces of information in each channel at the same time.

Active processing:

Learning occurs as people engage in cognitive processing during learning. This may include attending to relevant material, organizing that material into a coherent structure, and integrating that material with prior knowledge.

Due to the limits on any learner’s processing capability it is paramount that we select visual images that help manage the learning process. Our goal is to limit excessive processing that clutters the learning experience, build visual support for representing the core learning process, and provide visual support that fosters deeper understanding of the learning at hand. What does this mean in practice?

Managing Processing Via Image Use

Making decisions about image selection and use is a key to managing this learning process. Understanding the meaning of images to select is also key and is really a function of literacy in one’s field and visual literacy in general (Kennedy, 2013).

In practice we can use the following guidelines to make decisions about image use in multimedia-based online learning. 

  • Control Visual Elements – Too many images on a web page or slide may force extraneous cognitive processing that does not support the instructional objective. 
  • Select Visual Elements Carefully – Images difficult to discern are likely to negatively impact learning. Think about good visual quality, emotional and intellectual message of the image, information value, and readability.
  • Use Focused Visual Elements – Target selection of visual support to those images that represent the core learning material and/or provide access to deeper understanding of that core content.

Other Image Tips

Emotional Tone: Emotional design elements (e.g., visuals) can play important roles in motivating learners and achievement of learning outcomes (Mayer, 2013).

Interest: Decorative images may boost learner interest but do not contribute to higher performance in testing (Mayer, 2013). Use decorative images prudently so they do not contribute to extraneous learning processing (Pettersson & Avgerinou, 2016).

Challenge: Making image selections that contribute to a degree of confusion may challenge learnings to dive more deeply into core learning. This is a tenuous decision in that challenge in sense making may prove to foster excessive processing.

Access: Images must be presented in a format that is viewable to users to be practical. This involves an understanding of technical features of image formats, download capability, mobile use, and universal design techniques.

Final Thoughts

It is valuable to remember that visuals communicate non verbally. They are most effectively used when carefully selected and paired with text or audio narration. Visuals appeal to the sense of sight. They have different classifications and could be pictures, symbols, signs, maps graphs, diagrams, charts, models, and photographs. Knowing their form, meaning, and application is part of being a visually literate course developer or instructional designer.

Web Resources

References

Aisami, R. S. (2015). Learning Styles and Visual Literacy for Learning and Performance. Procedia – Social and Behavioral Sciences, 176, 538-545. doi:10.1016/j.sbspro.2015.01.508

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction : Proven guidelines for consumers and designers of multimedia learning. Retrieved from http://ebookcentral.proquest.com

Eger, L. (2018). How people acquire knowledge from a web page: An eye tracking study. Knowledge Management & E-Learning: An International Journal 10(3), 350-366.

Kennedy, B. (2013, November 19). What is visual literacy?. [Video file]. Retrieved from https://www.youtube.com/watch?time_continue=1&v=O39niAzuapc

Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171-173. doi:10.1016/j.learninstruc.2013.04.003

Rune Pettersson & Maria D. Avgerinou (2016) Information design with teaching and learning in mind, Journal of Visual Literacy, 35:4, 253-267, DOI: 10.1080/1051144X.2016.1278341

 

Credit: Embedded image by Kelly Sikkema on Unsplash.com

I recently attended one of Bryan Alexander’s Future Trend’s Forum webinar session (recording on youtube) on apps educators use in their work and in their life and learned about some very interesting apps.

Anti-app App:

  • ?Forest: an app to monitor time off phone (for personal use or group use, family use, etc.).
  • Flora: (free app) helps you and your friends stay focused on the task together (recommended by my wonderful co-worker Dorothy Loftin)

Apps for teaching and learning:

  • ? Desmos: Graph functions, plot data, evaluate equations, explore transformations, and much more – for free!
  • ➗Algebrabyhand: The most advanced drag and drop algebra tool for the web.
  • ?‍♂️Fabulous is a science-based app, incubated in Duke’s Behavioral Economics Lab, that will help you build healthy rituals into your life, just like an elite athlete.
  • ?Calm: App for meditation and sleep.
  • ?Meet Libby: a ground-breaking ebook reader and a beautiful audiobook player to read any book from your local library.
  • ?‍?Vuforia Chalk: Vuforia Chalk makes it easy when troubleshooting or expert guidance is needed for situations not covered in training or service manuals.
  • ?Lingrotogo: language learning app. LingroToGo is designed to make time devoted to language learning as productive and enjoyable as possible. (The difference between this app and other language learning app is that it is based on educational theory, the developers claim.)
  • ?Newsmeister: stay current with news challenge quizzes.
  • ??‍?Studytree: StudyTree analyzes students’ grades and behavioral patterns to construct customized recommendations to improve their academic performance. Additionally, StudyTree serves advisors and administrators by providing them managerial access to the application, which enables insight to useful statistics and an overview of each student’s individual progress.
  • ?Nearpod: Synchronize and control lessons across all student devices
  • Flipgrid: video for student engagement (recently purchased by Microsoft, not sure if any feature will change soon).

Fun Games:

  • Marcopolo: face-to-face messaging app for one-to-one and group conversations—bringing family and friends closer than ever with genuine conversations and moments shared. It could be used for student mock interviews and direct messaging within a group.
  • goosechase: scavenger hunts for the masses.

Productivity:

  • ?Tripit: find all your travel plans in one place.
  • ?rememberthemilk: the smart to-do app for busy people.
  • wunderlist: the easiest way to get stuff done.
  • ?Stitcher: Podcast aggregator allows you to get the latest episodes of your favorite podcasts wherever and whenever you want.
  • ?inoreader: The content reader for power users who want to save time.
  • ?Overcast: A powerful yet simple podcast player for iPhone, iPad, and Apple Watch, which dynamically shortens silences in talk shows.

Where to keep up with all the new tools and apps?

 

P.S. Icons come from emojipedia.org

If you have handy apps that make your life easier, feel free to share with us. We’d love to hear from you.

Books about teaching and learningThe New Science of Learning is a slim but instructive volume designed to guide college students to better attune their learning efforts with how their brains function. Authors Terry Doyle and Todd Zakrajsek apply the findings of neuroscience to the daily learning that takes place in higher education. Though the book is written for students, it’s a valuable quick-read for everyone involved in blended and online teaching and student success efforts.

As you look ahead to spring term, let’s consider two ways you can employ Doyle and Zakrajsek’s advice in online and hybrid teaching environments:

Tip 1 – Learning is significantly strengthened by encountering the content in multiple formats or modalities.

  • Problem: Much of the information we encounter online is still largely presented in the form of text. This is unfortunately true even in some poorly designed lecture videos, which are principally a narration of wordy PowerPoint slides, bullet point by boring bullet point.
  • Online teaching strategy: Quality online learning has moved well beyond “text under glass.” Your students will benefit when they are guided beyond text to view visually rich videos, listen to podcasts and other audio, to talk, write, think, reflect, respond and explore content in tactile or kinesthetic ways. Learning is enhanced in  a multimodal environment that helps students build connections by experiencing subject matter in diverse forms. The learner may not initially comprehend a difficult concept from reading it in a text, but may “get it” by interacting with peers in an online discussion or by watching an instructor-created video. Engage your students in online interaction–with the content, with each other and with you–to ensure that they are not merely passive consumers of course materials.

Tip 2 – The distributed practice effect (or “spacing effect”) refers to learning through study of content multiple times, with time gaps between these learning episodes. Extended periods of time with repeated exposure to the content helps form stronger memories. What duration of distributed practice is optimal? See the research on Optimizing Distributed Practice.

  • Problem: In a traditional college course, a student sometimes encounters a particular piece of content only once or twice, say in a lecture and then perhaps a brief mention in a textbook. There can be a tendency for both instructors and students to move through topics rapidly and superficially to get everything on the syllabus covered before the term ends. And, worse yet, study may be compressed into harried late-night sessions before a big exam. Cramming is not a pathway to true learning that endures over time.
  • Online teaching strategy: Facilitate distributed practice by designing assignments and pacing learning activities that encourage repeated engagement with course material over a period of many weeks. By skillfully staging assignments, for example, a term-long group project to develop a collaborative presentation, you guide students to interact with the content many times over a substantial time period. Interim deliverables, such as an annotated bibliography or lit review, an outline or storyboard, and a rough draft, will foster distributed practice. Clear rubrics and ample timely feedback on these various stages increases the probability of more students achieving the course learning outcomes.

Do you use these or similar techniques in your hybrid or fully online teaching? How does the science of learning inform your teaching strategies?

References

Cepeda, N. J., Coburn, N., Rohrer, D., Wixted, J. T., Mozer, M. C., & Pashler, H. (2009). Optimizing distributed practice: Theoretical analysis and practical implications. Experimental Psychology, 56(4), 236.

Doyle, T., & Zakrajsek, T. (2013). The new science of learning: How to learn in harmony with your brain. Stylus Publishing, LLC.

Eberly Center – Carnegie Mellon University. (n.d.). What are best practices for designing group projects? Retrieved from https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/design.html.