Joe Haxel, Acoustician, Assistant Professor, CIMRS/OSU
Greetings GEMM Lab blog readers. My name is Joe Haxel and I’m a close collaborator with Leigh and other GEMM lab members on the gray whale ecology, physiology and noise project off the Oregon coast. Leigh invited me for a guest blog appearance to share some of the acoustics work we’ve been up to and as you’ve probably guessed by now, my specialty is in ocean acoustics. I’m a PI in NOAA’s Pacific Marine Environmental Laboratory’s Acoustics Program and OSU’s Cooperative Institute for Marine Resources Studies where I use underwater sound to study a variety of earth and ocean processes.
As a component of the gray whale noise project, during the field seasons of 2016 and 2017 we recorded some of the first measurements of ambient sound in the shallow coastal waters off Oregon between 7 and 20 meters depth. In the passive ocean acoustics world this is really shallow, and with that comes all kinds of instrument and logistical challenges, which is probably one of the main reasons there is little or no acoustic baseline information in this environment.
For instance, one of the significant challenges is rooted in the hydrodynamics surrounding mobile recording systems like the drifting hydrophone we used during the summer field season in 2016 (Fig 1). Decoupling motion of the surface buoy (e.g., caused by swell and waves) from the submerged hydrophone sensor is critical, and here’s why. Hydrophones convert pressure fluctuations at the sensor/ water interface to a calibrated voltage recorded by a logging system. Turbulence resulting from moving the sensor up and down in the water column with surface waves introduces non-acoustic pressure changes that severely contaminate the data for noise level measurements. Vertical and horizontal wave motions are constantly acting on the float, so we needed to engineer compliance between the surface float and the suspended hydrophone sensor to decouple these accelerations. To overcome this, we employed a couple of concepts in our drifting hydrophone design. 1) A 10 cm diameter by 3 m long spar buoy provided floatation for the system. Spar buoys are less affected by wave motion accelerations compared to most other types of surface floatation with larger horizontal profiles and drag. 2) A dynamic shock cord that could stretch up to double its resting length to accommodate vertical motion of the spar buoy; 3) a heave plate that significantly reduced any vertical motion of the hydrophone suspended below it. This was a very effective design, and although somewhat cumbersome in transport with the RHIB between deployment sites, the acoustic data we collected over 40 different drifts around Newport and Port Orford in 2016 was clean, high quality and devoid of system induced contamination.
Spatial information from the project’s first year acoustic recordings using the drifting hydrophone system helped us choose sites for the fixed hydrophone stations in 2017. Now that we had some basic information on the spatial variability of noise within the study areas we could focus on the temporal objectives of characterizing the range of acoustic conditions experienced by gray whales over the course of the entire foraging season at these sites in Oregon. In 2017 we deployed “lander” style instrument frames, each equipped with a single, omni-directional hydrophone custom built by Haru Matsumoto at our NOAA/OSU Acoustics lab (Fig. 2). The four hydrophone stations were positioned near each of the ports (Yaquina Bay and Port Orford) and in partnership with the Oregon Department of Fish and Wildlife Marine Reserves program in the Otter Rock Marine Reserve and the Redfish Rocks Marine Reserve. The hydrophones were programmed on a 20% duty cycle, recording 12 minutes of every hour at 32 kHz sample rate, providing spectral information in the frequency band from 10 Hz up to a 13 kHz.
Here’s where the story gets interesting. In my experience so far putting out gear off the Oregon coast, anything that has a surface expression and is left out for more than a couple of weeks is going to have issues. Due to funding constraints, I had to challenge that theory this year and deploy 2 of the units with a surface buoy. This is not typically what we do with our equipment since it usually stays out for up to 2 years at a time, is sensitive, and expensive. The 2 frames with a surface float were going to be deployed in Marine Reserves far enough from the traffic lanes of the ports and in areas with significantly less traffic and presumably no fishing pressure. The surface buoy consisted of an 18 inch diameter hard plastic float connected to an anchor that was offset from the instrument frame by a 150 foot weighted groundline. The gear was deployed off Newport in June and Port Orford in July. What could go wrong?
After monthly buoy checks by the project team, including GPS positions, and buoy cleanings my hopes were pretty high that the surface buoy systems might actually make it through the season with recoveries scheduled in mid-October. Had I gambled and won? Nope. The call came in September from Leigh that one of the whale watching outfits in Depoe Bay recovered a free floating buoy matching ours. Bummer. Alternative recovery plans initiated and this is where things began to get hairy. Fortunately, we had an ace in our back pocket. We have collaborators at the Oregon Coast Aquarium (OCA) who have a top-notch research diving team led by Jim Burke. In the last week of October, they performed a successful search dive on the missing unit near Gull Rock and attached a new set of floats directly to the instrument frame. The divers were in the water for a short 20 minutes thanks to the good series of marks recorded during the buoy checks throughout the summer (Fig. 3).
We had surface marker floats on the frame, but there was a new problem. Video taken by Jenna and Doug from the OCA dive team revealed the landers were pretty sanded in from a couple of recent October storms (Fig. 4). Ugghhh!
Alternative recovery plan adjustment: we’re gonna need a diver assisted recovery with 2 boats. One to bring a dive team to air jet the sand out away from the legs of the frame and another larger vessel with pulling power to recover the freed lander. Enter the R/V Pacific Surveyor and Capt. Al Pazar. Al, Jim and I came up with a new recovery plan and only needed a decent weather window of a few hours to get the job done. Piece of cake in November off the Oregon coast, right?
The weather finally cooperated in early December in-line with the OCA dive team and R/V Pacific Surveyor’s availability. The 2 vessels and crew headed up to Gull Rock for the first recovery operation of the day. At first we couldn’t locate the surface floats. Oh no. It seemed the rough fall/ winter weather and high seas since late October were too much for the crab floats? As it turns out, we eventually found the floats eastward about 200 m but couldn’t initially see them in the glare and whitecapping conditions that morning. The lander frame had broken loose from its weakened anchor legs in the heavy weather (as it was designed to do through an Aluminum/ Stainless Steel galvanic reaction over time) and rolled or hopped eastward by about 200 m (Fig. 5). Oh dear!
Thankfully, the hydrophone was well protected, and no air jetting was required. With OCA divers out of the water and clear, the Pacific Surveyor headed over to the floats and easily pulled the lander frame and hydrophone on board (Fig. 6). Yipee!
On to the next hydrophone station. This station, deployed ~ 800 m west of the south reef off of South Beach near the Yaquina Bay port entrance. It was deployed entirely subsurface and was outfitted with an acoustic release transponder that I could communicate with from the surface and command to release a pop-up messenger float and line for eventual recovery of the instrument frame. Once on station, communication with the release was established easily (a good start) and we began ranging and moving the OCA vessel Gracie Lynn in to a position within about 2 water depths of the unit (~40 m). I gave the command to the transponder and the submerged release confirmed it was free of its anchor and heading for the surface, but it never made it. Uh oh. Turns out this lander had also broke free of its anchored legs and rolled/ hopped 800 m eastward until it was pinned up against the boulder structure of the south reef. Amazingly, OCA divers Jenna and Doug located the messenger float ~ 5 m below the surface and the messenger line had been fouled by the rolling frame so it could not reach the surface. They dove down the messenger line and attached a new recovery line to the lander frame and the Pacific Surveyor hauled up the frame and hydrophone in-tact (Fig. 6). Double recovery success!
The hydrophone data from both systems looks outstanding and analysis is underway. This recovery effort took a huge amount of patience and the coordination of 3 busy groups (NOAA/OSU, OCA, Capt. Al). Thanks to these incredible collaborations and some heroic diving from Jim Burke and his OCA dive team, we now have a unique and unprecedented shallow water passive acoustic data set from the energetic waters off the Oregon coast.
So that’s some of the story from the 2016 and 2017 field season acoustic point of view. I’ll save the less exciting, but equally successful instrument recoveries from Port Orford for another time.
You must be logged in to post a comment.