We Are Family

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM Lab celebrating Leigh’s birthday with homemade baked goods and discussions about science.

A lab is a family. I know there is the common saying about how you cannot choose your family and you can only choose your friends. But, I’d beg to differ. In the case of graduate school, especially in departments similar to OSU’s Fisheries and Wildlife, your lab is your chosen family. These are the people who encourage you when you’ve hit a roadblock, who push you when you need extra motivation, who will laugh with you when you’ve reached the point of hysteria after hours of data analysis, who will feed you when you’re too busy to buy groceries, and who will always be there for you. That sure sounds a lot like a family to me.

GEMM Lab members at the Society for Marine Mammalogy 2017 Conference in Halifax, Nova Scotia at the masquerade ball. Photo source: Florence Sullivan

Many of us spend weeks—if not months—conducting field research for our various projects. None of us do this work from the main campus…seeing as the main campus for Oregon State University is located Corvallis, Oregon which is approximately 50 miles inland from the Pacific Ocean. The GEMM Lab isn’t actually based on the main campus; instead, you’ll find the lab at the Hatfield Marine Science Center in Newport, Oregon, within a two-minute stroll of the picturesque Yaquina Bay. However, many of the core classes we need are only offered on main campus. This results in the GEMM Lab members being spread across Corvallis, Newport, and the dominant fieldwork site for their project (which could be locally in Oregon, or in the waters off of New Zealand). So rather than your typical, weekly, hour-long lab meetings, the GEMM Lab meetings are monthly and last on the order of 3-5 hours. Others hear this and think that must be overwhelming to have such a long lab meeting. On the contrary, these are scheduled to fit into all of our chaotic schedules. One day a month, all of us gather together as a family unit, share what’s new about our lives, be sounding boards for each other, solve problems, and do so in a supportive environment. Hopefully you’re getting the picture that just because we’re all part of the same lab, it doesn’t mean we’re geographically close. This is exactly why we cultivate meaningful relationships while we are together. The Harvard Business Review published an article 2015 based on multiple peer-reviewed journals, summarizing the six dominant characteristics necessary to foster a positive workplace:

  1. Caring for colleagues as friends
  2. Supporting each other
  3. Avoiding blame and forgiving mistakes
  4. Inspiring each other at work
  5. Emphasizing the meaningfulness of the work
  6. Treating each other with respect

And I can attest that every member within the GEMM Lab embraces all of these characteristics and I have a feeling that none of them have read that article prior to today. Family naturally follows those basic guidelines. And, our lab, is a family.

My very first GEMM Family Dinner.

Case and Point: when I was applying for graduate programs, I made a point of traveling to meet the GEMM Lab members at the monthly lab meeting. Sure, I also wanted to make sure that both Newport and Corvallis would be good fits in terms of locations. But, mostly, I needed to see if this Lab would be a strong family unit for my graduate school career and beyond. The moment I arrived at Hatfield Marine Science Center in Newport, it was clear, this was a family that I could see myself being a part of. Not only had all the members brought some kind of food item to share at the lab meeting (this was important to me), but Florence had baked homemade bread, Dawn had offered to show me around Hatfield, and Leila had set up a time to take me around main campus with other grad students. During the lab meeting discussions, I was welcomed to contribute and I felt comfortable doing so. That was another big moment where something “clicked” and I knew I had found a great group of amazing scientists who were also amazing human beings.

GEMM Lab members at the Port Orford Field Station in August 2017.

Flash forward a few months, and now I am one of those lab members who is bringing food to lab meetings. More than that, we have GEMM Lab dinners and game nights. I may be based in Corvallis, but I commute out to Newport just for these fun activities because this is my family. I want to be with them—not only when we’re talking about our research—but when we’re laughing about the silly things that happen in our daily lives, comically screaming at each other in an effort to win whatever game is on the table, and enjoying home-cooked meals. This is my family.

GEMM Lab members helping some friends at South Coast Tours build a dirt-bag house in August 2017.

I guess I’d like to plug this message to any potential graduate student regardless of discipline(s): find a lab with people that you truly want to surround yourselves with—day and night—in good times and in bad times—because undoubtedly, you’ll need those kinds of people. And, to current lab constituents in any lab: it’s up to us to create a supportive family which will make everyone successful.

Sister Sledge knew just this when the group sang this verse of their hit, “We Are Family”:

Living life is fun and we’ve just begun
To get our share of this world’s delights
High, high hopes we have for the future
And our goal’s in sight
We, no we don’t get depressed
Here’s what we call our golden rule
Have faith in you and the things you do
You won’t go wrong, oh-no
This is our family Jewel

I’m grateful to have found a lab that embodies the lyrics of one of my favorite childhood karaoke songs. The GEMM Lab is not only a lab that produces cutting-edge science; it is a family that encourages one another in all facets of life—creating an environment where people can have high-quality lives and generate high-quality science.

GEMM Lab Family Dinner complete with the board game, Evolution, and homemade pizza. October 2017.

Twitterific: The Importance of Social Media in Science

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

How do you create the perfect chemical formula for social media in science? (Photo Source: The Royal Society of Victoria)

There’s a never-ending debate about how active we, as scientists, should be on social media. Which social media platforms are best for communicating our science? When it comes to posting, how much is too much? Should we post a few, critical items that are highly pertinent, or push out everything that’s even closely related to our focus? Personally, my deep-rooted question revolves around privacy. What aspects of my life (and thereby my science), do I keep to myself and what do I share? I asked that exact question at a workshop last year, and I have some main takeaways.

At last year’s Southern California Marine Mammal Workshop, there was a very informative session about the role of media in science. More specifically, there was a talk on “Social Media and Communications Hot Topics” by Susan Poulton, the Chief Digital Officer of the Franklin Institute science museum in Philadelphia.  She emphasized how trust factors into our media connections and networks. What was once communicated in person or on paper, has given way to this idea of virtual connections. We all have our own “bubbles”. Susan defined “bubbles” as the people who we trust. We have different classifications of bubbles: the immediate bubble that consists of our friends, family, and close colleagues, the more distant bubble that has your friends of friends and distant colleagues, and the enigma bubble that has people you find based on computer algorithms that the computer thinks you’ll find relative. Susan brought up the point that many of us stay within our immediate bubble; even though we may discuss all of the groundbreaking science with our friends and coworkers, we never burst that bubble and expand the reaches of our science into the enigma bubble. I frequently fall into this category both intentionally and unintentionally.

Coworkers from NOAA’s Southwest Fisheries Science Center attending the Southern California Marine Mammal Workshop 2017. Pictured from left to right: Alexa, Michelle, Holly, and Keiko. (Photo source: Michelle Robbins.)

Many of us want to be advocates for our science. Education and outreach are crucial for communicating our message. We know this. But, can we keep what little personal life we have outside of science, private? The short of the long of it: No. Alisa Schulman-Janiger, another scientist and educator on the panel, reinforced this when she stated that she keeps a large majority of her social media posts as “public” to reach more people. Queue me being shocked. I have a decent social media presence. I have a private Facebook account, but public Twitter and LinkedIn accounts that I use only for science/academics/professional stuff, public Instagram, YouTube, and Flickr accounts that are travel and science-related, as well as a public blog that is a personal look at my life as a scientist who loves to travel. I tell you this because I am still incredibly skeptical about privacy; I keep my Facebook page about as private as possible without it being hidden. Giving up that last bit of my precious, immediate bubble and making it for the world to see feels invasive. But, I’m motivated to make sure my science reaches people who I don’t know. Giving science a personal story is what captures people; it’s why we read those articles in our Facebook feeds, and click on the interesting articles while scrolling through Twitter. Because of this, I’ve begun making more, not all, of my Facebook posts public. I’m more active on Twitter. I’m writing weekly blog posts again (we’ll see how long I can keep that up for). I’m trying to find the right balance that will keep my immediate bubble still private enough for my peace of mind and public enough that I am presenting my science to networks outside of my own—pushing through to the enigma bubble. Bubbles differ for each of us and we have to find our own balance. By playing to the flexibility of our bubbles, we can expand the horizons of our research.

Alexa at an Education/Outreach event, responding to a young student asking, “Why didn’t you bring this seal when it was alive?” (Photo source: Lori Lowder).

This topic was recently broached while attending my first official GEMM Lab meeting. Leigh brought up social media and how we, as a lab, and as individuals, should make an effort to shine light on all the amazing science that we’re a part of. We, as a lab, are trying to be more present. Therefore, in addition to these AMAZING weekly blog posts varying from highly technical to extremely colloquial, the lab will be posting more on Twitter. And that comes to the origin of this week’s blog post’s title. Leigh said that we should be “Twitterific” and I can’t help but feel that adjective perfectly suits our current pursuit. Here’s to being Twitterific!

With all that being said, be sure to follow us on: Twitter, YouTube, and here (don’t forget to follow us by entering your email address on the lefthand side of the page), of course.

Celebrating Hydrothermal Vents!

By Florence Sullivan, MSc Student OSU

40 years ago, in 1977 OSU researchers led an NSF funded expedition to the Galapagos on a hunt for suspected hydrothermal vents. From the 1960s to the mid-1970s, mounting evidence such as (1) temperature anomalies found deep in the water column, (2) conduction heat flow probes at mid ocean ridges recording temperatures much lower than expected, (3) unusual mounds found on benthic mapping surveys, and (4) frequent, small, localized earthquakes at mid oceanic ridges, had the oceanographic community suspecting the existence of deep sea hydrothermal vents. However, until the 1977 cruise, no one had conclusive evidence that they existed.  During the discovery cruise at the Galapagos rift, the PI (principle investigator), Dr. Jack Corliss from OSU, used tow-yos (a technique where you drag a CTD up and down through the water in a zig zag pattern – see gif) to pinpoint the location of the hydrothermal vent plume. The team then sent the Deep Submergence Vehicle (DSV) Alvin to investigate and returned with the first photographs and samples from a hydrothermal vent. While discovery of the vent systems helped answer many questions about chemical and heat fluxes in the deep sea, it generated so many new questions that novel fields of study were created in biology, microbiology, marine chemistry, marine geology, planetary science, astrobiology and the study of the origin of life.

 “Literally every organism that came up was something that was unknown to science up until that time. It made it terribly exciting. Anything that came [up] on that basket was a new discovery,” – Dr. Richard Lutz (Rutgers University)

In celebration of this great discovery, OSU’s College of Earth, Ocean and Atmospheric Sciences sponsored a seminar looking at the past, present, and future of hydrothermal vent sciences. Dr. Robert Collier began with a timeline of how the search for hydrothermal vents began, and a commemoration of all the excellent researchers and collaborations between institutions and agencies that made the discovery possible. He acknowledged that such collaborations are often somewhat tense in terms of who gets credit for which discovery, and that while Oregon State University was the lead of the project, it takes a team to get the work done.  Dr. Jack Corliss proudly followed up with a wonderful rambling explanation of how vent systems work, and a brief dip into his ground breaking paper, “An Hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth.” Published in 1981, with co-authors Dr. John Baross and Dr. Sarah Hoffman, they postulate that the temperature and chemical gradients seen at hydrothermal vents provide pathways for the synthesis of chemical compounds, formation and evolution of ‘precells’ and eventually, the evolution of free living organisms.

Dr. Corliss, Dr. Baross, and Dr. Hoffman were the first to suggest the now popular theory of the origin of life at hydrothermal vents. (click on image to read full paper)

Because of time constraints, the podium was swiftly handed over to Dr. Bill Chadwick (NOAA PMEL/ HMSC CIMRS) who brought us forward to the present day with an exciting overview of current vent research.  He began by saying “at the beginning, we thought, ‘No one has seen one of these systems before, they must be very rare…’ Now, we have found them [hydrothermal vents] in every ocean basin – including the arctic and southern oceans. We just needed to know how to look!”  Dr. Chadwick also reminded us that even 40 years later, new discoveries are still being made. For example, on his most recent cruise aboard the R/V Falkor in December 2016, they found a sulfur chimney that was alternately releasing bubbles of gas (sulfur, CO2 or other, hard to know without sampling) or bubbles of liquid sulfur! Check out the video below:

Some of the goals for this recent cruise included mapping new areas of the Mariana back-arc, and investigating differences in the biological communities between vents in the Mariana trench region (a subduction zone) and vents in the back arc (a spreading zone) to see if geology plays a role in biological community composition.  For some very cool video footage of the expedition and the various dives performed by the brand new ROV SUBastian (because all scientists love puns), check out the Schmidt Ocean Institute youtube channel.

Dr. Chadwick showed this video to highlight results from his last cruise.

Finally, Dr. Andrew Thurber wrapped up the session with some thoughts about hydrothermal vents from the perspective of an ecosystem services model. Even after 40 years of research, there are still many unknowns about these ecosystems.  Individual vent systems are inherently unique due to their deep sea isolation. However, most explored sites have revealed metals and mineral deposits that have generated a lot of interest from commercial sea floor mining companies. Exploitation of these deposits would be an example of ecosystem “provisioning services” (products that are obtained from the ecosystem). Other examples include the biology of the vents as a source of new genetic material, and the thermal and chemical gradients as natural laboratories that could lead to breakthroughs in pharmaceutical research. Cultural services are those non-material benefits that people obtain from an ecosystem. At hydrothermal vents these include new scientific discoveries, educational uses (British children’s television show “The Octonauts,” has several episodes featuring hydrothermal vent creatures), and creative inspiration for artists and others. Dr. Thurber cautions that there are ethical questions to be answered before considering exploitation of these resources, but there is a lot of potential for commercial and non-commercial use of vent ecosystems.

Vent inspired art by Lily Simonson

As an undergraduate at the University of Washington, I spent time as a research assistant in Dr. John Baross’ astrobiology lab. We studied evolutionary pathways of hydrothermal vent viruses and bacteria to inform the search for life on exoplanets such as Jupiter’s moon Europa.  It was very fun and exciting for me to attend this seminar, hear stories from pioneers in the field, and remember the systems I worked on in undergrad.  I may have moved up the food chain a little now, but as we all work on our pieces of the puzzle, it is important for scientists to remember the interdisciplinary nature of our work, and how there is always something more to learn.