Finding the edge: Preliminary insights into blue whale habitat selection in New Zealand

By Dawn Barlow, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I was fortunate enough to spend the Austral summer in the field, and so while the winter rain poured down on Oregon I found myself on the water with the sun and wind on my face, looking for blue whales in New Zealand. This spring I switched gears and spent time taking courses to build my analytical toolbox. In a course on technical writing and communication, I was challenged to present my research using only pictures and words with no written text, and to succinctly summarize the importance of my research in an introduction to a technical paper. I attended weekly seminars to learn about the diverse array of marine science being conducted at Oregon State University and beyond. I also took a course entitled “Advanced Spatial Statistics and Geographic Information Science”. In this skill-building course, we were given the opportunity to work with our own data. Even though my primary objective was to expand the tools in my toolbox, I was excited to explore preliminary results and possible insight into blue whale habitat selection in my study area, the South Taranaki Bight region (STB) of New Zealand (Figure 1).

Figure 1. A map of New Zealand, with the South Taranaki Bight (STB) region delineated by the black box. Farewell Spit is denoted by a star, and Kahurangi point is denoted by an X.

Despite the recent documentation of a foraging ground in the STB, blue whale distribution remains poorly understood in New Zealand. The STB is New Zealand’s most industrially active marine region, and the site of active oil and gas extraction and exploration, busy shipping traffic, and proposed seabed mining. This potential space-use conflict between endangered whales and industry warrants further investigation into the spatial and temporal extent of blue whale habitat in the region. One of my research objectives is to investigate the relationship between blue whales and their environment, and ultimately to build a model that can predict blue whale presence based on physical and biological oceanographic features. For this spring term, the question I asked was:

Is the number of blue whales present in an area correlated with remotely-sensed sea surface temperature and chlorophyll-a concentration?

For the purposes of this exploration, I used data from our 2017 survey of the STB. This meant importing our ship’s track and our blue whale sighting locations into ArcGIS, so that the data went from looking like this:

… to this:

The next step was to get remote-sensed images for sea surface temperature (SST) and chlorophyll-a (chl-a) concentration. I downloaded monthly averages from the NASA Moderate Resolution Imaging Spectrometer (MODIS aqua) website for the month of February 2017 at 4 km2 resolution, when our survey took place. Now, my images looked something more like this:

But, I can’t say anything reliable about the relationships between blue whales and their environment in the places we did not survey.  So next I extracted just the portions of my remote-sensed images where we conducted survey effort. Now my maps looked more like this one:

The above map shows SST along our ship’s track, and the locations where we found whales. Just looking at this plot, it seems like the blue whales were observed in both warmer and colder waters, not exclusively in one or the other. There is a productive plume of cold, upwelled water in the STB that is generated off of Kahurangi point and curves around Farewell Spit and into the bight (Figure 1). Most of the whales we saw appear to be near that plume. But how can I find the edges of this upwelled plume? Well, I can look at the amount of change in SST and chl-a across a spatial area. The places where warm and cold water meet can be found by assessing the amount of variability—the standard deviation—in the temperature of the water. In ArcGIS, I calculated the deviation in SST and chl-a concentration across the surrounding 20 km2 for each 4 km2 cell.

Now, how do I tie all of these qualitative visual assessments together to produce a quantitative result? With a statistical model! This next step gives me the opportunity to flex some other analytical muscles, and practice using another computational tool: R. I used a generalized additive model (GAM) to investigate the relationships between the number of blue whales observed in each 4 km2 cell our ship surveyed and the remote-sensed variables. The model can be written like this:

Number of blue whales ~ SST + chl-a + sd(SST) + sd(chl-a)

In other words, are SST, chl-a concentration, deviation in SST, and deviation in chl-a concentration correlated with the number of blue whales observed within each 4 km2 cell on my map?

This model found that the most important predictor was the deviation in SST. In other words, these New Zealand blue whales may be seeking the edges of the upwelling plume, honing in on places where warm and cold water meet. Thinking back on the time I spent in the field, we often saw feeding blue whales diving along lines of mixing water masses where the water column was filled with aggregations of krill, blue whale prey. Studies of marine mammals in other parts of the world have also found that eddies and oceanic fronts—edges between warm and cold water masses—are important habitat features where productivity is increased due to mixing of water masses. The same may be true for these New Zealand blue whales.

These preliminary findings emphasize the benefit of having both presence and absence data. The analysis I have presented here is certainly strengthened by having environmental measurements for locations where we did not see whales. This is comforting, considering the feelings of impatience generated by days on the water spent like this with no whales to be seen:

Moving forward, I will include the blue whale sighting data from our 2014 and 2016 surveys as well. As I think about what would make this model more robust, it would be interesting to see if the patterns become clearer when I incorporate behavior into the model—if I look at whales that are foraging and traveling separately, are the results different? I hope to explore the importance of the upwelling plume in more detail—does the distance from the edge of the upwelling plume matter? And finally, I want to adjust the spatial and temporal scales of my analysis—do patterns shift or become clearer if I don’t use monthly averages, or if I change the grid cell sizes on my maps?

I feel more confident in my growing toolbox, and look forward to improving this model in the coming months! Stay tuned.

Building scientific friendships: A reflection on the 21st annual meeting of the Northwest Student Chapter of the Society for Marine Mammalogy

By Dawn Barlow, M.Sc. student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I recently had the opportunity to attend and present my research at the 21st meeting of the Northwest Student Chapter of the Society for Marine Mammalogy. This gathering represented a community of graduate and undergraduate students from the Pacific Northwest, networking and discussing their research on the biology of marine mammals. Dr. John Ford, whose name has become synonymous with killer whale research in the Pacific Northwest, delivered a compelling keynote speech on not only the history of his research, but also the history of the relationships he has built in the field and the people that have shaped the past five decades of killer whale research. This theme of cultivating scientific relationships was a thread that carried us through the weekend. Beautiful weather had us all smiling happily as we ate our lunches outside, musing about science in the sunshine. A philosopher’s café event facilitated roundtable discussions with experts in veterinary science, spatial statistics, management consulting, physiology, and marine pollution. Students were given the space to ask questions ranging from manuscript writing advice to the worth of our work in the current political climate (and write notes or doodle drawings on the paper-covered tables as we listened).

The oral and poster presentations were all very impressive. I learned that bowhead whales are likely feeding year-round in the Canadian Arctic, adjusting their dive depth to the vertical location of their copepod prey. I learned that the aerobic dive limit of stellar sea lions is more of a sliding scale rather than a switch as it is for Weddell seals. I learned that some harbor seals are estuary specialists, feeding on salmon smolt. And I learned about the importance of herring to Northeast Pacific marine mammals through an energy-based ecosystem model. I had the opportunity to present my research on the ecology of New Zealand blue whales to an audience outside of Oregon State University for the first time, and was pleased with how my presentation was received.

Aaron Purdy, MSc student with the University of British Columbia’s Marine Mammal Research Unit, moderates the first oral presentation session wearing the designated “fluke tuke”. I may have giggled at the Canadian word for beanie, but I have to admit, “fluke tuke” has a much better ring to it than “fluke beanie”!

But beyond the scientific research itself, I also learned that there is a strong community of motivated and passionate young scientists in the Pacific Northwest studying marine mammals. Our numbers may not be many and we may be scattered across several different universities and labs, but our work is compelling and valuable. At the end of the weekend, it felt like I was saying goodbye to new friends and future colleagues. And, I learned that the magnificent size of a blue whale never fails to impress and amaze, as all the conference attendees marveled over the blue whale skeleton housed in the Beaty Biodiversity Museum at the University of British Columbia.

Left to right: Michelle Fournet, Samara Haver, myself, and Niki Diogou representing Oregon State University at the student conference. Behind us is a blue whale skeleton, housed in the Beaty Biodiversity Museum on the University of British Columbia campus.

Many thanks to the graduate students from the University of British Columbia who organized such a successful event! At the end of the conference, it was decided that the next meeting of the Northwest Student Chapter will be hosted by the Oregon State University students here at Hatfield Marine Science Center in Newport. It is a year away, but I am already looking forward to seeing these newfound peers again and hearing how their research has progressed.

A happy student selfie at the end of a successful conference! We are looking forward to a reunion at Hatfield Marine Science Center next May!

“Marching for Science” takes many forms

By Florence Sullivan, MSc student, Oregon State University.

Earth day is a worldwide event celebrated annually on April 22, and is typically observed with beach, park, or neighborhood clean ups, and outreach events sponsored by environmental groups.  Last year, environmentalists rejoiced when 195 nations signed the Paris Agreement – to “strengthen global response to the threat of climate change by keeping global temperature rise below 2 degrees C”.

GEMM Lab member Dawn Barlow helps carry the banner for the Newport, OR March for Science which over 600 people attended. photo credit: Maryann Bozza

This year, the enviro-political mood is more somber. Emotions in the GEMM Lab swing between anger and dismay to cautious optimism and hope. The anger comes from threatened budget cuts, the dismissal of climate science, and the restructuring of government agencies, while we find hope at the outpouring of support from our local communities, and the energy building behind the March for Science movement.

The Newport March for Science. photo credit: Maryann Bozza

What is perhaps most striking about the movement is how celebratory it feels. Instead of marching against something, we are marching FOR science, in all its myriad forms. With clever signs and chants like “The oceans are rising, and so are we”, “Science, not Silence”, and “We’re nerds, we’re wet, we’re really quite upset” (it rained on a lot of marches on Saturday) echoing around the globe, Saturday’s Marches for Science were a cathartic release of energy, a celebration of like-minded people.

Our competition room for NOSB 2017! Game officials are in the front of the picture, competitors at the first two desks, and parents, coaches and supporters in the back.

While millions of enthusiastic people were marching through the streets, I “Ran for Science” at the 20th annual National Ocean Science Bowl (NOSB) – delivering question sheets and scores between competitors and graders as 25 teams competed for the title of national champion! Over the course of the competition, teams of four high school students compete through rounds of buzzer-style multiple choice questions, worksheet style team challenge questions, and the Scientific Expert Briefing, a mock congressional hearing where students present science recommendations on a piece of legislation.  The challenges are unified with a yearly theme, which in 2017 was Blue Energy: powering the planet with our ocean.  Watching the students (representing 33 states!) compete is exciting and inspiring, because they obviously know the material, and are passionate about the subject matter.  Even more encouraging though, is realizing that not all of them plan to look for jobs as research scientists. Some express interest in the arts, some in policy, or teaching or engineering. This competition is not just about fostering the next generation of leading marine scientists, but rather about creating an ocean-literate, and scientifically-literate populace.  So, congratulations to Santa Monica High School, who took home the national title for the first time this year! Would you like to test your knowledge against some of the questions they faced? Try your luck here!

Santa Monica competes in the final round

The GEMM Lab also recently participated in the Hatfield Marine Science Center’s Marine Science Day.  It’s an annual open house where the community is invited to come tour labs, meet scientists, get behind the scenes, and learn about all the exciting research going on.  For us as researchers, it’s a great day to practice explaining our work and its relevance to many different groups, from school children to parents and grandparents, from artists to fishermen to teachers, fellow researchers, and many others.  This year the event attracted over 2,000 people, and the GEMM Lab was proud to be a part of this uniquely interactive day.  Outreach events like this help us feel connected to our community and the excitement present in all the questions field during this event reassure us that the public still cares about the work that we do.

Lab members Florence, Leila, and Dawn (L to R) answer questions from the public.

Our science is interdisciplinary, and we recognize the strength of multiple complimentary avenues of action to affect change.  If you are looking to get involved, consider taking a look at these groups:

500 Women Scientists: “working to promote a diverse and inclusive scientific community that brings progressive science-based solutions to local and global challenges.” Read their take on the March for Science.

314Action: starting from Pi (3.14), their mission is “to (1) strengthen communication among the STEM community, the public and our elected officials, (2) Educate and advocate for and defend the integrity of science and its use, (3) Provide a voice for the STEM community on social issues, (4) Promote the responsible use of data driven fact based approaches in public policy and (5) Increase public engagement with the STEM Community through media.”

She should run: “A movement working to create a culture that inspires women and girls to aspire towards public leadership. We believe that women of all backgrounds should have an equal shot at elected leadership and that our country will benefit from having a government with varied perspectives and experiences.” https://peoplesclimate.org/

And finally, The March for Science is finishing up it’s week of action, culminating in the People’s Climate March on April 29.

How will you carry the cause of science forward?

 

The best field season ever

By Dawn Barlow, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

8:35pm on February 20th found the blue whale team smiling, singing, and dancing on the aft deck of the R/V Star Keys as the light faded and the sky glowed orange and we marked our final waypoint of the 2017 blue whale field season. What preceded was a series of days so near perfect that we had barely dared dream of the like. Sighting after sighting, and our team of scientists and the wonderful Star Keys crew began to work like a well-oiled machine—approach the whale gently and observe its behavior, fly the drone, deploy the CTD and echosounder, approach for photos, launch the small boat, approach for biopsy, leave the whale, re-apply sunscreen, find another whale, repeat. This series of events continued from sunrise until sunset, when the sky and water were painted brilliant colors. The sound of big blue whale breaths broke the silence over the glassy water, and the plumes of exhaled air lit up in the last bits of sunlight, lingering there without even a puff of wind to blow them away.

A blue whale mother and calf surface in front of Farewell Spit in calm conditions as the daylight starts to fade. Photo by Leigh Torres.
The small boat returns to R/V Star Keys after collecting the final biopsy sample of the season. Photo by Dawn Barlow.

Despite coming to New Zealand during the “worst summer ever”, I’m pleased to say that this has been the most fruitful field season the New Zealand blue whale project has had. We covered a total of 1,635 nautical miles and recorded sightings of 68 blue whales, in addition to sightings of killer whales, pilot whales, common dolphins, dusky dolphins, sharks, and many seabirds. Five of our blue whale sightings included calves, reiterating that the South Taranaki Bight appears to be an important area for mother-calf pairs. Callum and Mike (Department of Conservation) collected 23 blue whale biopsy samples, more than twice the number collected last year. Todd flew the drone over 35 whales, observing and documenting behaviors and collecting aerial imagery for photogrammetry. We took 9,742 photos, which will be used to determine how many unique individuals we saw and how many of them have been sighted in previous years.

A blue whale surfaces with R/V Star Keys in the background. Photo taken from the small boat by Leigh Torres.

It is always hard to see a wonderful thing come to an end, and we agreed that we would all happily continue this work for much longer if funding and weather permitted. But as the small skiff returned to the Star Keys with our final biopsy sample and the dancing began, we all agreed that we couldn’t have asked for a better note to end on. There has already been plenty of wishful chatter about future field efforts, but in the meantime we’re still floating from this year’s success. I will certainly have my hands full when I return to Oregon, and in the best possible way. It feels good to have an abundance of data from a project I’m passionate about.

A blue whale comes up for air in a calm sea. Photo by Leigh Torres.

Thank you to Western Work Boats and Captain James “Razzle-Dazzle” Dalzell, Spock, and Jason of the R/V Star Keys for their hard work, patience, and good attitudes. James made it clear at the beginning of the trip that this was to be our best year ever, and it was nothing less. The crew went from never having seen a blue whale before the trip to being experts in maneuvering around whales, oceanographic data collection, and whale poop-scooping. Thank you to Callum Lilley and Mike Ogle from the Department of Conservation for their time, impressive marksmanship, and enthusiasm. And once again thank you to all of our colleagues, funders, and supporters—this project is made possible by collaboration. Now that we’ve wrapped up, blue whale team members are heading in different directions for the time being. We’ll be dreaming of blue whales for weeks to come, and looking forward to the next time our paths cross.

Blue whale team members in front of R/V Star Keys in port in Nelson.
The team rejoices after a magnificent final survey day!

 

….aaaand we’re off! The blue whale team heads to New Zealand

By Dawn Barlow, MSc Student, Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries and Wildlife, Oregon State University

Today we are flying to the other side of the world and boarding a 63-foot boat to study the largest animals ever to have inhabited this planet: blue whales (Balaenoptera musculus). Why do we study them, and how will we do it? Before I tell you, first let me say that no fieldwork is ever straightforward, and consequently no fieldwork lacks exciting learning opportunities. I have learned a lot about the logistics of an international field season in the past month, which I will share with you here!

The South Taranaki Bight, which lies between the north and south islands of New Zealand, is the study area for this survey.
Research vessel Star Keys will be our home for the month of February as we look for whales.

Unmanned aerial systems (UAS, a.k.a. “drones”) are becoming more prevalent in our field as a powerful and minimally invasive tool for studying marine mammals. Last year, our team was able to capture what we believe is the first aerial footage of nursing behavior in baleen whales, in addition to feeding and traveling behaviors. And beyond behavior, these aerial images contain morphological and physiological information about the whales such as how big they are, whether they are pregnant or lactating, and if they are in good health. I’ll start making a packing list for you to follow along with. So far it contains two drones and all of their battery supplies and chargers.

Aerial image of a blue whale mother and calf captured by a drone during the 2016 field season.

Perhaps you read my first GEMM Lab blog post, about identifying individual blue whales from photographs? Using these individual IDs, I plan to generate an abundance estimate for this blue whale population, as well as look at residency and movement patterns of individuals. Needless to say, we will be collecting photo-ID images this year as well! Add two large pelican cases with cameras and long lenses to the packing list.

Blue whale photo-ID image, showing the left and right sides of the same whale. I have identified 99 unique individuals so far, and look forward to adding to our catalog this year!

Now wouldn’t it be great to capture video of animal behavior in some way other than with the UAS? Maybe even from underwater? Add two GoPros and all of their associated paraphernalia to the mounting gear pile.

Now, bear with me. There is a wealth of physiological information contained in blue whale fecal matter. And when hormone analysis from fecal samples is paired with photogrammetry from UAS images, we can develop a valuable picture of individual and population-level health, stress, nutrition, and reproductive status. So, say we are able to scoop up lots of blue whale fecal samples – wouldn’t that be fantastic? Yes! Alright, add two nets, a multitude of jars, squirt bottles, and gloves to the gear list. And then we still need to bring them back to our lab here in Newport. How does that happen? Well, we need to filter out the sea water, transfer the samples to smaller tubes, and freeze them… in the field, on a moving vessel. Include beakers, funnels, spatulas, and centrifuge tubes on the list. Yes, we will be flying back with a Styrofoam cooler full of blue whale “poopsicles”. Of course, we need a cooler!

Alright, and now remember the biopsy sampling that took place last season? Collecting tissue samples allows us to assess the genetic structure of this population, their stable isotopic trophic feeding level, and hormone levels. Well, we are prepared to collect tissue samples once again! Remember to bring small tubes and scalpel blades for storing the samples, and to get ethanol when we arrive in Wellington.

An important piece in investigating the habitat of a marine predator is learning about the prey they are consuming. In the case of our blue whales, this prey is krill (Nyctiphanes australis). We study the prey layer with an echo sounder, which sends out high frequency pings that bounce off anything they come in contact with. From the strength of the signal that bounces back it is possible to tell what the composition of the prey layer is, and how dense. The Marine Mammal Institute here at OSU has an echo sounder, and with the help of colleagues and collaborators, positive attitudes, and perseverance, we successfully got the transducer to communicate with the receiver, and the receiver to communicate with the software, and the software to communicate with the GPS.  Add one large pelican case for the receiver. Can we fit the transducer in there as well? Hmmm, this is going to be heavy…

Blue whale team members and colleagues troubleshoot and test the Simrad EK60 echo sounder before packing it to take to New Zealand.

Now the daunting, ever-growing to-do lists have been checked off and re-written and changed and checked off again. The mountain of research gear has been evaluated and packed and unpacked and moved and re-evaluated and packed again. The countdown to our departure date has ended, and this evening Leigh, Todd, and I fly out of Portland and make our way to Wellington, New Zealand. To think that from here all will be smooth and flawless is naïve, but not being able to contain my excitement seems reasonable. Maybe it’s the lack of sleep, but more likely it’s the dreams coming true for a marine ecologist who loves nothing more than to be at sea with the wind in her face, looking for whales and creatively tackling fieldwork challenges.

In the midst of the flurry of preparations, it can be easy to lose sight of why we are doing this—why we are worrying ourselves over poopsicle transport and customs forms and endless pelican cases of valuable equipment for the purpose of spending several weeks on a vessel we haven’t yet set foot on when we can’t even guarantee that we’ll find whales at all. This area where we will work (Figure 1) is New Zealand’s most industrially active region, where endangered whales share the space with oil rigs, shipping vessels, and seismic survey vessels that have been active since October in search of more oil and gas reserves. It is a place where we have the opportunity to study how these majestic giants fit into this ecosystem, to learn what about this habitat is driving the presence of the whales and how they’re using the space relative to industry. It is an opportunity for me as a scientist to pursue questions in ecology—the field of study that I love. It is also an opportunity for me as a conservation advocate to find my voice on issues of industry presence, resource extraction, and conflicts over ocean spaces that extend far beyond one endangered species and one region of the world.

Fieldwork preparations have made clear to me once again the strength and importance of collaboration in science. Kim Bernard from OSU’s College of Earth, Ocean, and Atmospheric Sciences and Craig Hayslip from the Marine Mammal Institute’s Whale Telemetry Group spent half a day troubleshooting the echosounder with us. Western Work Boats has manufactured a pole mount for the echosounder transducer, and Kristin Hodge is joining us from Cornell University’s Bioacoustics Research Program to assist with data collection. Callum Lilley and Mike Ogle from the New Zealand Department of Conservation will join us in Wellington to collect the biopsy samples, and Rochelle Constantine and Scott Baker will facilitate the archiving and transport of the tissue samples back to Newport for analysis. Scientific colleagues at NIWA will collaborate on oceanographic aspects and conduct stable isotope analysis of tissue samples. We are also grateful to the indispensable logistical support from Kathy Minta and Minda Stiles in the OSU Marine Mammal Institute. And, of course we could not do any of this work without the generous funding support from The Aotearoa Foundation, The New Zealand Department of Conservation, Greenpeace Aotearoa New Zealand, OceanCare, The International Fund for Animal Welfare Oceanea Office, Kiwis Against Seabed Mining, the OSU Marine Mammal Institute, and the Thorpe Foundation. Our science is stronger when we pool our energy and expertise, and I am thrilled to be working with this great group of people.

Stay tuned, the next several blogs will be posted from the field by the New Zealand blue whale team!

GEMM Lab 2016: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Oregon State University

The year is rapidly coming to a close, and what a busy year it has been in the Geospatial Ecology of Marine Megafauna Lab! In 2016, our members have traveled to six continents for work (all seven if we can carry Rachael’s South African conference over from the end of 2015…), led field seasons in polar, temperate, and tropical waters, presented at international conferences, processed and analyzed data, and published results. Now winter finds us holed up in our offices in Newport, and various projects are ramping up and winding down. With all of the recent turmoil 2016 has brought, it is a nice to reflect on the good work that was accomplished over the last 12 months. In writing this, I am reminded of how grateful I am to work with this talented group of people!

The year started with a flurry of field activity from our southern hemisphere projects! Erin spent her second season on the Antarctic peninsula, where she contributed to the Palmer Station Long Term Ecological Research Project.

Erin collecting a crabeater seal scat sample.
Erin in action collecting a crabeater seal scat sample along the West Antarctic Peninsula.

 

Aerial image of the research vessel and a pair of blue whales during the 2016 New Zealand survey.
Aerial image of the research vessel and a pair of blue whales during the 2016 New Zealand survey.

The New Zealand blue whale project launched a comprehensive field effort in January and February, and it was a fruitful season to say the least. The team deployed hydrophones, collected tissue biopsy and fecal samples, and observed whales feeding, racing and nursing. The data collected by the blue whale team is currently being analyzed to aid in conservation efforts of these endangered animals living in the constant presence of the oil and gas industry.

Midway atoll is home to one of the largest albatross colony in the world, and Rachael visited during the winter breeding season. In addition to deploying tracking devices to study flight heights and potential conflict with wind energy development, she became acutely aware of the hazards facing these birds, including egg predation by mice and the consumption of plastic debris.

Laysan albatross equipped with a GPS data logger.
Laysan albatross equipped with a GPS data logger.
Fledgling from last year with a stomach full of plastic.
Fledgling from last year with a stomach full of plastic.

Early summertime brought red-legged kittiwakes to the remote Pribilof Islands in Alaska to nest, and Rachael met them there to study their physiology and behavior.

Rachael with a noosepole on St. George Island, Alaska
Rachael with a noosepole on St. George Island, Alaska
Solene with Dr. Claire Garrigue during fieldwork at the Chesterfield Reefs, New Caledonia.
Solene with Dr. Claire Garrigue during fieldwork at the Chesterfield Reefs, New Caledonia.

As the weather warmed for us in the northern hemisphere, Solene spent the austral winter with the humpback whales on their breeding grounds in New Caledonia. Her team traveled to the Chesterfield Reefs, where they collected tissue biopsy samples and photo-IDs, and recorded the whale’s songs. But Solene studies far more than just these whales! She is thoroughly examining every piece of environmental, physical, and oceanographic data she can get her hands on in an effort to build a thorough model of humpback whale distribution and habitat use.

A humpback whale in New Caledonia's South Lagoon.
A humpback whale in New Caledonia’s South Lagoon.

Summertime came to Oregon, and the gray whales returned to these coastal waters. Leigh, Leila, and Todd launched into fieldwork on the gray whale stress physiology project. The poop-scooping, drone-flying team has gotten a fair bit of press recently, follow this link to listen to more!

The overhead drone captures a pair of gray whales surfacing between kelp beds off Cape Blanco, Oregon, with the research vessel nearby. Take under NOAA/NMFS permit #16111 given to John Calambokidis.
The overhead drone captures a pair of gray whales surfacing between kelp beds off Cape Blanco, Oregon, with the research vessel nearby. Take under NOAA/NMFS permit #16111 given to John Calambokidis.

And while Leigh, Leila, and Todd followed the grays from the water, Florence and her team watched them from shore in Port Orford, tracking their movement and behavior. In an effort to gain a better understanding of the foraging ecology of these whales, Florence and crew also sampled their mysid prey from a trusty research kayak.

13
Florence and the summer 2016 gray whale field team.
DSCF0758
Kelli Iddings sampling mysid near Port Orford.

With the influx of gray whales came an influx of new and visiting GEMM Lab members, as Florence’s team of interns joined for the summer season. I was lucky enough to join this group as the lab’s newest graduate student!

All summer 2016 GEMM Lab members.
All of the summer 2016 GEMM Lab members.

Our members have presented their work to audiences far and wide. This summer Leigh, Amanda, and Florence attended the International Marine Conservation Congress, and Amanda was awarded runner-up for the best student presentation award! Erin traveled to Malaysia for the Scientific Convention on Antarctic Research, and Rachael and Leigh presented at the International Albatross and Petrel Conference in Barcelona. With assistance from Florence and Amanda, Leigh led an offshore expedition on OSU’s research vessel R/V Oceanus to teach high school students and teachers about the marine environment.

Amanda with her award!
Amanda with her award!
Science Party musters in the dry lab for safety debrief aboard R/V Oceanus.
Science Party musters in the dry lab for safety debrief aboard R/V Oceanus.

Courtney fledged from the GEMM Lab nest before 2016 began, but the work she did while here was published in Marine Mammal Science this year. Congrats Courtney! And speaking of publications, additional congratulations to Solene for her publication in Marine Ecology Progress Series, Rachael for her four publications this year in PLOS ONE, Marine Ecology Progress Series, Marine Ornithology, and the Journal of Experimental Biology, and Leigh for her five publications this year in Polar Biology, Diversity and Distributions, Marine Ecology Progress Series, and Marine Mammal Science!

Wintertime in Newport has us tucked away indoors with our computers, cranking through analyses and writing, and dreaming about boats, islands, seabirds, and whales… Solene visited from the South Pacific this fall, and graced us with her presence and her coding expertise. It is a wonderful thing to have labmates to share ideas, frustrations, and accomplishments with.

No heat in the lab can't stop us from solving a coding problem together on a wintery evening!
Solving a coding problem together on a wintery evening.

As the year comes to a close, we have two newly-minted Masters of Science! Congratulations to Amanda and Erin on successfully defending their theses, and stay tuned for their upcoming publications!

Amanda's post-defense celebration!
Amanda’s post-defense celebration!
Erin's post-defense celebration!
Erin’s post-defense celebration!

We are looking forward to what 2017 brings for this team of marine megafauna enthusiasts. Happy holidays from the GEMM Lab!

Happy GEMM Lab members.
Happy GEMM Lab members, enjoying one another’s company and playing Evolution.

Assembling a Toolbox

By Dawn Barlow, MSc student, Oregon State University

toolbox
Source: https://www.ohrd.wisc.edu/home/portals/0/toolbox.jpg

The season has shifted since the post I wrote this summer about diving into the world of New Zealand blue whales and the beginnings of my masters research. My fieldwork will take place during the upcoming austral summer, which will require me to miss the winter term here on campus. This quarter, I have put my research on the back burner for the time being in favor of a full load of coursework. But my project is still there, simmering subtly and persistently, and giving relevance to the coursework that I’m focusing my energy on this fall term.

As an undergraduate student, I acquired a broad scientific background and had the opportunity to dabble in the areas of biology that piqued my interest. I arrived here with a basic understanding of chemistry, physics, cell biology, anatomy, marine ecology and conservation biology. I gained experience working in the field with intertidal sea stars, snails, mussels, crabs and barnacles, with bottlenose dolphins and with humpback whales. But now my focus has narrowed as I’ve honed in on the specific questions that I will pursue over the next two years. My passion lies in marine ecology and conservation. Now, as a graduate student studying the ecology of a little-known population in a highly industrial area, this passion can come to fruition. For my masters, I hope to do the following:

A) Use photo-identification analysis to obtain a population abundance estimate for blue whales in New Zealand

B) Investigate blue whale residency and distribution patterns in New Zealand waters

C) Develop a comprehensive blue whale habitat use model for the South Taranaki Bight region of New Zealand, which incorporates physical and biological data

Down the road I hope to have implemented a capture-recapture abundance estimate model that best fits the dynamics of this population of blue whales, to have mapped where sightings have occurred and where the highest densities of blue whales are found in both space and time, and to have paired blue whale presence and absence with prey distribution, remote-sensed environmental data, and in situ oceanographic data. But how does one accomplish these things? I need a toolbox to draw from. And so this fall, I am assembling my toolbox, learning programs and analytical skills. I am taking methods courses—statistics, data management in R, analysis in GIS, methods in physiology and behavior of marine megafauna—that are no longer explorations into the world of natural science, but rather tools for exploring, identifying, and interpreting specific phenomena in ecology. While each comes with its own hiccups and headaches (see Florence’s post about this…), they are powerful tools.

Aside from coursework, the research I’m conducting has gained weight and relevance beyond being an investigation in ecology. My study area lies in the South Taranaki Bight of New Zealand, which is a contentious proposed seabed mining site for iron sands. As an undergraduate student I read case studies and wrote papers on the environmental impacts of industry, and I decided to go graduate school because I want to do research that has direct conservation applications. Last week I compiled all the data I’ve processed on blue whale sightings, seasonal residency, and photo identification for the South Taranaki Bight, which will be included as evidence submitted in environmental court in New Zealand by my advisor, Dr. Leigh Torres. “Applied conservation science” has been an abstract idea that has excited and motivated me for a long time, and now I am partaking in this process, experiencing applied conservation science firsthand.

And so my toolbox is growing, and the scope of my work is simultaneously narrowing in focus and expanding in relevance. The more tools I acquire, the more excited I am to apply them to my research. As I build my toolbox this fall, this process is something I look forward to enhancing while I’m in the field, when I dig deeper into data analysis, and as I grow as a conservation scientist.

A blue whale dives in the South Taranaki Bight, New Zealand. Photo by Leigh Torres.
A blue whale dives in the South Taranaki Bight, New Zealand. Photo by Leigh Torres.

Oceanus Day Three: Dolphin Delights

by Florence Sullivan, MSc student

Our third day aboard the Oceanus began in the misty morning fog before the sun even rose. We took the first CTD cast of the day at 0630am because the physical properties of the water column do not change much with the arrival of daylight. Our ability to visually detect marine mammals, however, is vastly improved with a little sunlight, and we wanted to make the best use of our hours at sea possible.

Randall Munroe www.XKCD.com

Our focus on day three was the Astoria canyon – a submarine feature just off the Oregon and Washington coast. Our first oceanographic station was 40 miles offshore, and 1300 meters deep, while the second was 20 miles offshore and only 170 meters deep.  See the handy infographic below to get a perspective on what those depths mean in the grand scheme of things.  From an oceanographic perspective, the neatest finding of the day was our ability to detect the freshwater plume coming from the Columbia River at both those stations despite their distance from each other, and from shore! Water density is one of the key characteristics that oceanographers use to track parcels of water as they travel through the ocean conveyor belt. Certain bodies of water (like the Mediterranean Sea, or the Atlantic or Pacific Oceans) have distinct properties that allow us to recognize them easily. In this case, it was very exciting to “sea” the two-layer system we had gotten used to observing overlain with a freshwater lens of much lower salinity, higher temperature, and lower density. This combination of freshwater, saltwater, and intriguing bathymetric features can lead to interesting foraging opportunities for marine megafauna – so, what did we find out there?

Click through link for better resolution: Randall Munroe www.XKCD.com/1040/large

Morning conditions were almost perfect for marine mammal observations – glassy calm with low swell, good, high, cloud cover to minimize glare and allow us to catch the barest hint of a blow….. it should come as no surprise then, that the first sightings of the day were seabirds and tuna!

I didn't catch any photos of the Tuna, so here's some mola mola we spotted. photo credit: Florence Sullivan
I didn’t catch any photos of the tuna, so here’s some sunfish we spotted. photo credit: Florence Sullivan

One of the best things about being at sea is the ability to look out at the horizon and have nothing but water staring back at you. It really drives home all the old seafaring superstitions about sailing off the edge of the world.  This close to shore, and in such productive waters, it is rare to find yourself truly alone, so when we spot a fishing trawler, there’s already a space to note it in the data log.  Ships at sea often have “follower” birds – avians attracted by easy meals as food scraps are dumped overboard. Fishing boats usually attract a lot of birds as fish bycatch and processing leftovers are flushed from the deck.  The birders groan, because identification and counts of individuals get more and more complicated as we approach other vessels.  The most thrilling bird sighting of the day for me were the flocks of a couple hundred fork-tailed storm petrels.

Fork-tailed storm petrels
Fork-tailed storm petrels. photo credit: Florence Sullivan

I find it remarkable that such small birds are capable of spending 80% of their life on the open ocean, returning to land only to mate and raise a chick. Their nesting strategy is pretty fascinating too – in bad foraging years, the chick is capable of surviving for several days without food by going into a state of torpor. (This slows metabolism and reduces growth until an adult returns.)

Just because the bird observers were starting to feel slightly overwhelmed, doesn’t mean that the marine mammal observers stopped their own survey.  The effort soon paid off with shouts of “Wait! What are those splashes over there?!” That’s the signal for everyone to get their binoculars up, start counting individuals, and making note of identifying features like color, shape of dorsal fin, and swimming style so that we can make an accurate species ID. The first sighting, though common in the area, was a new species for me – Pacific white sided dolphins!

Pacific white sided dolphin
A Pacific white sided dolphin leaps into view. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis

A pod of thirty or so came to ride our bow wake for a bit, which was a real treat. But wait, it got better! Shortly afterward, we spotted more activity off the starboard bow.  It was confusing at first because we could clearly see a lot of splashes indicating many individuals, but no one had glimpsed any fins to help us figure out the species. As the pod got closer, Leigh shouted “Lissodelphis! They’re lissodelphis!”  We couldn’t see any dorsal fins, because northern right whale dolphins haven’t got one! Then the fly bridge became absolute madness as we all attempted to count how many individuals were in the pod, as well as take pictures for photo ID. It got even more complicated when some more pacific white sided dolphins showed up to join in the bow-riding fun.

Northern right whale dolphins are hard to spot! photo credit: Florence Sullivan Taken under NMFS permit 16111 John Calambokidis
Northern right whale dolphins are hard to spot! photo credit: Florence Sullivan Taken under NMFS permit 16111 John Calambokidis

All told, our best estimates counted about 200 individuals around us in that moment. The dolphins tired of us soon, and things continued to calm down as we moved further away from the fishing vessels.  We had a final encounter with an enthusiastic young humpback who was breaching and tail-slapping all over the place before ending our survey and heading towards Astoria to make our dock time.

Humpback whale breach
Humpback whale breach. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis

As a Washington native who has always been interested in a maritime career, I grew up on stories of The Graveyard of the Pacific, and how difficult the crossing of the Columbia River Bar can be. Many harbors have dedicated captains to guide large ships into the port docks.  Did you know the same is true of the Columbia River Bar?  Conditions change so rapidly here, the shifting sands of the river mouth make it necessary for large ships to receive a local guest pilot (often via helicopter) to guide them across.  The National Motor Lifeboat School trains its students at the mouth of the river because it provides some of “the harshest maritime weather conditions in the world”.  Suffice it to say, not only was I thrilled to be able to detect the Columbia River plume in our CTD profile, I was also supremely excited to finally sail across the bar.  While a tiny part of me had hoped for a slightly more arduous crossing (to live up to all the stories you know), I am happy to report that we had glorious, calm, sunny conditions, which allowed us all to thoroughly enjoy the view from the fly bridge.

Cape Disappointment Lighthouse at the Columbia River Bar.
Cape Disappointment Lighthouse at the Columbia River Bar.

Finally, we arrived in Astoria, loaded all our gear into the ship’s RHIB (Ridged Hulled Inflatable Boat), lowered it into the river, descended the rope ladder, got settled, and motored into port. We waved goodbye to the R/V Oceanus, and hope to conduct another STEM cruise aboard her again soon.

Now if the ground would stop rolling, that would be just swell.

Last but not least, here are the videos we promised you in Oceanus Day Two – the first video shows the humpback lunge feeding behavior, while the second shows tail slapping. Follow our youtube channel for more cool videos!

 

Oceanus Day Two: All the Albatrosses

By Amanda Holdman and Florence Sullivan

Today got off to a bright and early start. As soon as daylight permitted, we had spotters out on duty looking for more marine mammals. We began to survey at the north end of Heceta bank, where we again encountered many humpback whales lunge feeding. We broke transect, and got some great video footage of a pair them – so check our youtube channel next week – we’ll upload the video as soon as we get back to better internet (dial up takes some getting used to again – the whales don’t know about highspeed yet).

Humpbacks lunge feeding at surface. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis.
Humpbacks lunge feeding at surface. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis.

After working with the humpbacks to capture photo-id data for about an hour, we turned south, and ran parallel to Heceta bank until we reached the southern edge. Along the way, we counted 30 humpbacks, and many California gulls, marbled murrelets, pink footed shearwaters, and sooty shearwaters.

After lunch, we conducted a CTD cast to see how conditions might be different between the southern and northern edges of the bank. Surface temperatures increased from 12.09C to 13.2C while bottom temperatures decreased from 8.7C to 7.8C.  The northern station was a textbook perfect two layer system. It had a well mixed surface layer with a steep pycnocline separating it from the colder, saltier, denser, bottom layer. The southern station still had two layers, but the pycnocline (the depth where a rapid change in density occurs, which delineates the edges of water masses) was not as steep. We are interested in these discreet measurements of ocean conditions because areas of high primary productivity (the green chlorophyll-a line) are often re-occurring hot spots of food for many levels of the food chain. Since we can’t phone the whales and ask them where to meet up, we use clues like these to anticipate the best place to start looking.

Readout of the CTD cast. The left plot has temperature in blue, and salinity in green. The right plot has density in black, chlorophyll-a in green, and oxygen in blue. observe how different variables change with depth!
Readout of the CTD cast. The left plot has temperature in blue, and salinity in green. The right plot has density in black, chlorophyll-a in green, and oxygen in blue. observe how different variables change with depth (on the y-axes)!

We next turned west to transect the continental shelf break. Here, we were hoping to observe changes in species composition as waters got deeper, and habitat changed.  The shelf break is often known as an area of upwelling and increased primary productivity, which can lead to concentrations of marine predators taking advantage of aggregations of prey. As we moved further offshore, everyone was hoping for some sperm whales, or maybe some oceanic dolphin species, and if we’re really lucky, maybe a beaked whale or two.

Black footed Albatross with immature gulls. photo credit: Leigh Torres
Black footed Albatross with immature gulls. photo credit: Leigh Torres

Today our students learned the lesson of how difficult marine mammal observation can be when our target species spend the majority of their lives underwater – where we can’t see them. While there were a couple of hours of mammal empty water in there, observers were kept busy identifying long tailed- jaegers, cassin’s auklets, murrelets, petrels, shearwaters, fulmars, and so many black-footed albatrosses, that they almost became “normal”.  That being said, we did spot a fin whale, a few groups of Dall’s porpoise, and three pacific-white-sided dolphins.  Unexpectedly, we also saw an unidentified shark, and several sunfish (mola mola)!

Humpback whale profile. photo credit: Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.
Humpback whale profile – notice the hump before the dorsal fin. photo credit: Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.
Fin Whale profile. photo credit: Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.
Fin Whale profile – notice how long the back is before the fin, and how pointed the dorsal fin is compared to the humpback. photo credit: Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.

Last but not least, we engaged in a long standing oceanographic tradition, which is to draw on Styrofoam cups, and send them down to Davy Jone’s Locker attached to the CTD.  When you bring them back up, the pressure has caused them to shrink to a fraction of their original size, which is an excellent demonstration of the crushing power of pressure (and why its harder to build a submarine than a rocket).

Shrunken cups! The first row have been sent down to 1400m, while the back row are still full size!
Shrunken cups! The first row have been sent down to 1400m, while the back row are still full size!

Now, we are steaming north toward Astoria Canyon, where we hope to make some more sightings in the morning. Stand by for news from our final day at sea.

Fin Whale. photo credit Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.
Fin Whale. photo credit Amanda Holdman. Taken under NMFS permit 16111 John Calambokidis.
Dahl's Porpoise. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis.
Dahl’s Porpoise. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis.

R/V Oceanus Day One: Hungry Hungry Humpbacks

By Florence Sullivan and Amanda Holdman

The GEMM lab is adventuring out into the wild blue yonder of open ocean sampling and educational outreach! Leigh is the chief scientist onboard the R/V Oceanus for the next two days as we sail through Oregon waters in search of marine megafauna. Also onboard are four local teachers and five high school students who are learning the tricks of the trade. Amanda and I are here to help teach basic oceanography and distance sampling techniques to our enthusiastic students.

Science Party musters in the dry lab for safety debrief. photo credit: Florence Sullivan
Science Party musters in the dry lab for safety debrief. photo credit: Florence Sullivan

We started the morning with safety briefings, and headed out through the Newport breakwater, direction: Stonewall Bank.  Stonewall is a local bathymetric feature where upwelling often occurs, leading to a productive ecosystem for both predators and prey. Even though our main sampling effort will be offshore this trip, we didn’t even make out of the harbor before recording our first gray whale and California sea lion sightings.

California Sea Lions on the Newport buoy. Taken under NMFS permit 16111 John Calambokidis
California Sea Lions on the Newport buoy. Taken under NMFS permit 16111 John Calambokidis

Our students (and their teachers) are eager and quick to catch on as we teach them new methodologies. Amanda and I had prepared presentations about basic oceanographic and distance sampling methods, but really the best way to learn is to jump in and go. We’ve set up a rotation schedule, and everyone is taking turns scanning the ocean for critters, deploying and recovering the CTD, logging data, and catching plankton.

a small pod of Orca. Photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis
A small pod of Orca. Photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis

So far, we have spotted gray whales, sea lions, a pod of (lightning speed) killer whales, lots of seagulls, northern fulmars, sooty shearwaters, storm petrels, and cormorants, but today’s highlight has to the last sighting of ~42 humpback whales. We found them at the Northern edge of Heceta Bank – a large rocky reef which provides structural habitat for a wide variety of marine species. As we approached the area, we spotted one whale, and then another. At first, our spotters had no trouble inputting the data, getting photo-ID shots, and distinguishing one whale from the next, but as we continued, we were soon overwhelmed. With whale blows surrounding us on all sides, it was hard to know where to look first – here a surface lunge, there, a breach, a spout, a fluke, a flipper slap! The surface activity was so dense and enthralling, it took a few moments before realizing there were some sea lions in the feeding frenzy too!

Five humpback whales surface at once. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis
Five humpback whales surface at once. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis

We observed the group, and tried to document as many individuals as possible as the sunset faded into night. When poor visibility put a stop to the visuals, we hurried to do a plankton tow and CTD cast to find some environmental insights for such a gathering. The CTD revealed a stratified water column, with two distinct layers, and the plankton tow brought up lots of diatoms and krill. As one of the goals of this cruise is to explore how marine mammals vary with ocean gradients, this is a pretty cool way to start.

A humpback whale lunge feeds. Photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis
A humpback whale lunge feeds. Photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis

A long day observing has left us all exhausted, but not too tired to share our excitement. Stay tuned for more updates from the briny blue!

Follow this link for real time view of our beautiful ship! : http://webcam.oregonstate.edu/oceanus

Humpback flukes for photo ID. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis
Humpback flukes for photo ID. photo credit: Leigh Torres. Taken under NMFS permit 16111 John Calambokidis