A Summer of “Firsts” for Team Whale Storm

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

To many people, six weeks may seem like a long time. Counting down six weeks until your favourite TV show airs can feel like time dragging on slowly (did anyone else feel that way waiting for Blue Planet II to be released?). Or crossing off the days on your calendar toward that much-needed holiday that is still six weeks away can feel like an eternity. It makes sense that six weeks should feel like a long time. After all, six weeks are approximately a ninth of an entire year. Yet, I can assure you that if you asked anyone on my research team this summer whether six weeks was a long time, they would all say no.

As I watched each of my interns present our research to a room of 50 engaged community members (Fig. 1) after our six week research effort, I couldn’t help but feel an overwhelming sense of pride for all of them at how far they had come during the course of the field season.

Figure 1. Our audience at the community presentation on August 31. Photo by Leigh Torres.

On the very first day of our two-week training back in July, I gave my team an introductory presentation covering gray whales, their ecology, what the next six weeks would look like, how this project had developed and its results to date (Quick side-note here: I want to give a huge shout out to Florence and Leigh as this project would not be what it is today without their hard work and dedication as they laid the groundwork for it three years ago and have continued to improve and expand it). I remember the looks on my interns’ faces and the phrase that comes to mind is ‘deer in headlights’. It isn’t surprising that this was the case as this internship was the first time any of them had done marine mammal field work, or any kind of field work for that matter. It makes me think back to my first taste of field work. I was a fresh high school graduate and volunteering with a bottlenose dolphin research group. I remember feeling out of place and unsure of myself, both in terms of data collection skills but also having to live with the same people I had worked with all day. But as the first few days turned into the first few weeks, I grew into my role and by the end of my time there, I felt like an expert in what I was doing. Based on the confidence with which my interns presented our gray whale foraging ecology research to an audience just over a week ago, I know that they too had become experts in these short six weeks. Experts in levelling a theodolite, in sighting a blow several kilometres out from our cliff site, in kayaking in foggy conditions, in communicating effectively in high stress situations – the list goes on and on.

While you may have read the previous blog posts written by each of my interns in the last four weeks and thus have a sense of who they are, I want to tell you a little more about each of these hardworking undergraduates that played a large role in making this year’s Port Orford gray whale season so effective. Although we did not have any local high school interns this year, the whole team hails from Oregon, specifically from Florence, Sweet Home and Portland.

Figure 2. Haley on the cliff equipped with the camera waiting for a whale to surface. Photo by Cynthia Leonard.

Haley Kent (Fig. 2), my co-captain and Marine Studies Initiative (MSI) intern, an Environmental Science major, is going into her senior year at OSU this fall. She is focused and driven, which I know will enable her to pursue her dream of becoming a shark researcher (I can’t even begin to describe her excitement when we saw the thresher shark on our GoPro video). I couldn’t have asked for a better right hand person for my first year taking over this project and I am excited to see what results she will reveal through her project of individual gray whale foraging preferences. Also, Haley has a big obsession for board games and provided the team with many evenings of entertainment thanks to Munchkin and King of Tokyo.

Figure 3. Dylan in the stern of the kayak on a foggy day reeling down the GoPro stick on the downrigger. Photo by Haley Kent.

Dylan Gregory (Fig. 3) is transferring from Portland Community College and is going to be an OSU junior this fall. Not only was Dylan always extremely helpful in working with me to come up with ways to troubleshoot or fix gear, but his portable speaker and long list of eclectic podcasts always made him a very good cliff team partner. He was also Team Whale Storm’s main chef in the kitchen, and while some of his dishes caused tears & sweat among some team members (Dylan is a big fan of spices), there were never any leftovers, indicating how delicious the food was.

Figure 4. Robyn on one of our day’s off visiting the gigantic Redwoods in California. Photo by Haley Kent.

Robyn Norman (Fig. 4) will be a sophomore at OSU this fall and her commitment to zooplankton identification has been invaluable to the project. Last year when she was a freshman, Robyn was given our zooplankton samples from 2017, a few identification guides and instructions on how to use the dissecting microscope, before she was left to her own devices. Her level of independence and dedication as a freshman was incredible and I am very grateful for the time and skills she has given to this work. Besides this though, Robyn always brought an element of happiness to the room and I can speak on behalf of the rest of the team, that when she was gone for a week on a dive trip, the house did not feel the same without her.

Figure 5. Hayleigh Middleton at the community presentation. Her dry humour and quips earned her a lot of laughter from the audience keeping them entertained. Photo by Tom Calvanese.

Hayleigh Middleton (Fig. 5), a fresh high school graduate and freshly turned 18 during the project, is starting as a freshman at OSU this fall. She is extremely perceptive and would (thankfully) often remind others of tasks that they had forgotten to do (like take the batteries out of the theodolite or to mention the Secchi depth on the GoPro videos). I was very impressed by Hayleigh’s determination to continue working on the kayak despite her propensity for sea sickness (though after a few days we did remedy this by giving her raw ginger to chew on – not her favourite flavour or texture but definitely very, very effective!). She is inquisitive about almost everything and I know she will do very well in her first year at OSU.

Thank you, Team Whale Storm (Fig. 6), for giving me six weeks of your summer and for making my first year as project leader as seamless as it could have been! Without each and every one of you, I would not have been able to survey for 149.2 hours on the cliff, collect over 300 zooplankton samples, identify 31 gray whales, or launch a tandem kayak at 6:30 am every morning.

Figure 6. Team Whale Storm. Back row, from left to right: Haley Kent, Robyn Norman, Hayleigh Middleton, Dylan Gregory. Front row, from left to right: Tom Calvanese, Dr. Leigh Torres, Lisa Hildebrand. Photo by Mike Baran.

My interns were not the only ones to experience many “firsts” during this field season. I learned many new things for the first time right alongside them. While taking leadership is not a foreign concept to me, these six weeks were my first real experience of leading a project and a team for a sustained period of time. Managing teams, delegating tasks and compiling data felt gratifying because I felt like I was exactly where I should be (Fig. 7).

Figure 7. From left to right: Tom, myself, Hayleigh & Dylan on the cliff site looking for whales. Photo by Leigh Torres.
Figure 8. Haley & I on a cold evening out on the water but very excited to have gotten back the GoPro stick retrieved by divers after it had been stuck in a crevice for over 5 days. Photo by Lisa Hildebrand.

I dealt with many daunting tasks, yet thanks to the support of my interns, as well as Tom (Port Orford field station’s incredible station manager), Florence and Leigh, I learned how to resolve my problems: I fixed and replaced broken or lost gear (I am not a very mechanically inclined person; Fig. 8), budgeted food for five hungry people doing tiring field work (I’ve only ever budgeted for one person previously), and taught people how to use gear that I had not often used before (I can say now that the theodolite and I are friends, but this wasn’t the case for the first few weeks…).

 

Figure 9. Me with all the gear packed into the truck ready to leave Port Orford after the end of the field season. Photo by Haley Kent.

In the lead up to the summer field season this year, Leigh said to me, in one of the many emails we exchanged, that leading the project was a big task but that it was just six weeks long. She suggested that I rest up and get organised as much as I could ahead of time because, after all, the data collected this summer was going to be my thesis data, so I would want it to be as good as possible. Looking back, she couldn’t have been more right – the six weeks simply flew by, I did need the rest she had advised, and it definitely was a big task. I can’t wait for it to happen all over again next summer.

Looking through the scope: A world of small marine bugs

By Robyn Norman, GEMM Lab summer 2018 intern, OSU undergraduate

Although the average human may think all zooplankton are the same, to a whale, not all zooplankton are created equal. Just like us, different whales tend to favor different types of food over others. Thus, creating a meal perfect for each individual preference. Using a plankton net off the side of our kayak, each day we take different samples, hoping to figure out more about prey and what species the whales, we see, like best. These samples are then transported back to the lab for analysis and identification. After almost a year of identifying zooplankton and countless hours of looking through the microscope you would think I would have seen everything these tiny organisms have to offer.  Identifying mysid shrimp and other zooplankton to species level can be extremely difficult and time consuming, but equally rewarding. Many zooplankton studies often stop counting at 300 or 400 organisms, however in one very long day in July, I counted over 2,000 individuals. Zooplankton tend to be more difficult to work with due to their small size, fragility, and large quantity.

Figure 1. A sample fresh off the kayak in the beginning stages of identification. Photo by Robyn Norman.

A sample that looks quick and easy can turn into a never-ending search for the smallest of mysids. Most of the mysids that I have sorted can be as small as 5 mm in length. Being difficult to identify is an understatement. Figure 1 shows a sample in the beginning stages of analysis, with a wide range of mysids and other zooplankton. Different species of mysid shrimp generally have the same body shape, structure, size, eyes and everything else you can think of. The only way to easily tell them apart is by their telson, which is a unique structure of their tail. Their telsons cannot be seen with the naked eye and it can also be hard to find with a microscope if you do not know exactly what you are looking for.

 

Throughout my time identifying these tiny creatures I have found 9 different species of mysid from this gray whale foraging ecology project in Port Orford from the 2017 summer. But in 2018 three mysid species have been particularly abundant, Holmesimysis sculpta, Neomysis rayii, and Neomysis mercedis.

Figure 2. Picture taken with microscope of a Holmesimysis sculpta telson. Photo by Robyn Norman.

H. sculpta has a unique telson with about 18 lateral spines that stop as they reach the end of the telson (Figure 2). The end of the telson has 4 large spines that slightly curve to make a fork or scoop-like shape. From my own observations I have also noticed that H. sculpta has darker coloring throughout their bodies and are often heavily pregnant (or at least during the month of August). Neomysis rayii and Neomysis mercedis have been extremely difficult to identify and work with. While N. rayii can grow up to 65 mm, they can also often be the same small size as N. mercedis. The telsons of these two species are very similar, making them too similar to compare and differentiate. However, N. rayii can grow substantially bigger than N. mercedis, making the bigger shrimp easier to identify. Unfortunately, the small N. rayii still give birth to even smaller mysid babies, which can be confused as large N. mercedis. Identifying them in a timely manner is almost impossible. After a long discussion, we decided it would be easier to group these two species of Neomysis together and then sub-group by size. Our three categories were 1-10 mm, 11-15 mm, 16+ mm. According to the literature, N. mercedis are typically 11-15 mm meaning that anything over this size should be a N. rayii (McLaughlin 1980).

Figure 3. Microscopic photo of a gammarid. Photo source: WikiMedia.
Figure 4. Caprellidae found in sample with unique coloration. Photo by Robyn Norman.

While mysids comprise the majority of our samples, they are not the only zooplankton that I see. Amphipods are often caught along with the shrimp. Gammarids look like the terrestrial potato bug and can grow larger than some species of mysid (Fig. 3).

As well as, Caprellidae (Fig. 4) that remind me of little tiny aliens as they have large claws compared to their body size, making it hard to get them out of our plankton net. These impressive creatures are surprisingly hardy and can withstand long times in the freezer or being poked with tweezers under a microscope without dying.

In 2017, there was a high abundance of amphipods found in both of our study sites, Mill Rocks and Tichenor Cove. Mill Rocks surprisingly had 4 times the number of amphipods than Tichenor Cove. This result could be one of the possible reasons gray whales were observed more in Mill Rocks last year. Mill Rocks also has a substantial amount of kelp, a popular place for mysid swarms and amphipods. The occurrence of mysids at each of these sites was almost equal, whereas amphipods were almost exclusively found at Mill Rocks. Mill Rocks also had a higher average number of organisms than Tichenor Cove per samples, potentially creating better feeding grounds for gray whales here in Port Orford.

Analyzing the 2018 data I can already see some differences between the two years. In 2018 the main species of mysid that we are finding in both sites are Neomysis sp. and Holmesimysis sculpta, whereas in 2017 Alienacanthomysis macropsis, a species of mysid identified by their long eye stalks and blunt telson, made up the majority of samples from Tichenor Cove. There has also been a large decrease in amphipods from both locations compared to last year. Two samples from Mill Rocks in 2017 had over 300 amphipods, however this year less than 100 have been counted in total. All these differences in zooplankton prey availability may influence whale behavior and movement patterns. Further data analysis aims to uncover this possibility.

Figure 5. 2017 zooplankton community analysis from Tichenor Cove. There was a higher percentage and abundance of Neomysis rayii (yellow) and Alienacanthomysis macropsis (orange) than in Mill Rocks.
Figure 6. 2017 zooplankton community analysis from Mill Rocks. There was a higher abundance and percentage of amphipods (blue) and Holmesimysis sculpta (brown) than in Tichenor cove. Caprellidae (red) increased during the middle of the season, and decreased substantially towards the end.

The past 6 weeks working as part of the 2018 gray whale foraging ecology research team in Port Orford have been nothing short of amazing. We have seen over 50 whales, identified hundreds of zooplankton, and have spent almost every morning on the water in the kayak. An experience like this is a once in a lifetime opportunity that we were fortunate to be a part of. For the past few years, I have been creating videos to document important and exciting times in my life. I have put together a short video that highlights the amazing things we did every day in Port Orford, as well as the creatures that live just below the surface. I hope you enjoy our Gray Whale Foraging Ecology 2018 video with music by Myd – The Sun. 

[B]reaching New Discoveries about Gray Whales in Oregon

By Haley Kent, Marine Studies Initiative (MSI) & summer GEMM Lab intern, OSU senior

“BLOW!”, yells a team “Whale Storm” member, as mist remains above the water from an exhaling gray whale (Eschrichtius robustus). While based at the Port Orford Field Station for 6 weeks of my final summer as an undergrad at Oregon State University my heart has only grown fonder for marine wildlife. I am still in awe of this amazing opportunity of researching the foraging ecology of gray whales as a Marine Studies Initiative and GEMM Lab intern. From this field work I have already learned so much about gray whales and their zooplankton prey, and now it’s time to analyze the data we have collected and see what ecological stories we can uncover.

Figure 1. Robyn and Haley enjoy their time in the research kayak. Photo by Lisa Hildebrand.

WORK IN THE FIELD

This internship is my first field work experience and I have learned many skills and demands needed to study marine wildlife: waking up before the sun (every day begins with screaming alarms), being engulfed by nature (Port Orford is a jaw-dropping location with rich biodiversity), packing up damp gear and equipment to only get my feet wet in the morning ocean waves again, and of course waiting on the weather to cooperate (fog, wind, swell). I wouldn’t want it any other way.

Figure 2. Smokey sunrise from the research kayak. Photo by Haley Kent.

Whether it is standing above the ocean on the ‘Cliff Site’ or sitting in our two-man kayak, every day of this internship has been full of new learning experiences. Using various field work techniques, such as using a theodolite (surveying equipment to track whale location and behavior), Secchi disks (to measure water clarity), GoPro data collection, taking photos of wildlife, and many more tools, have given me a new bank of valuable skills that will stick with me into my future career.

Figure 3. Haley drops Secchi disk from the research kayak. Photo by Dylan Gregory.

Data Analysis

To maximize my amazing internship experience, I am conducting a small data analysis project using the data we have collected these past weeks and in previous summers.  There are so many questions that can be asked of these data, but I am particularly interested in how many times individual gray whales return to our study area to forage seasonally or annually, and if these individual whales forage preferentially where certain zooplankton prey are available.

Photo Identification

After many hours of data collection in the field either in the kayak or on the cliff, we get to take a breather in the lab to work on various projects we are each assigned. Some job tasks include processing data, identifying zooplankton, and looking through the photos taken that day to potentially identify a known whale. Once photos are processed and saved onto the rugged laptop, they are ready for some serious one on one. Looking through each of the 300 photos captured each day can be very tedious, but it is worthwhile when a match is found. Within the photos of each individual whale I first determine whether it is the left or right side of the whale – if we are lucky we get both! – and maybe even a fluke (tail) photo!

Figure 4. Buttons’ left side. Photo taken by Gray Whale Team of 2018.
Figure 5. Buttons’ left side. Photo taken by Gray Whale Team of 2017.

The angles of these photos (Fig. 4 & 5) are very different, so it could be difficult to tell these are the same whale. But, have a closer look at the pigmentation patterns on this whale. Focus on a single spot or area of spots, and see how patterns line up. Does that match in the same area in the next photo? If yes, you could have yourself a match!

Buttons, one of the identified gray whales (Fig. 4 & 5), was seen in 2016, 17, and 18. I was so excited to identify Buttons for the 3rd year in a row as this result demonstrates this whale’s preference for foraging in Port Orford.

Zooplankton and whale foraging behavior

By using the theodolite we track the whale’s position from the cliff location. I have plugged these coordinates into Google Earth, and compared the coordinates to our zooplankton sample stations from that same day. These methods allow me to assess where the whale spent time, and where it did not, which I can then relate to the zooplankton species and abundance we caught in our sample tows (we use a net from the research kayak to collect samples throughout the water column).

Figure 6. Holmesimysis sculpta. This species can range between 4-12mm. The size of this zooplankton relative to the large gray whales foraging on it shows the whale’s incredible senses for prey preference. Photo source: Scripps Institute of Oceanography.

Results (preliminary)

‘Eyeball’ is one of our resident whales that we have identified regularly throughout this season here in Port Orford. I have compared the amount of time Eyeball has spent near zooplankton stations to the prey community we captured at each station.

There is a positive trend in the amount of time the whale spent in an area with the percent abundance of Holmesimysis sculpta (Fig. 7: blue trend line).

Figure 7. Comparative plot between the amount of time the whale “Eyeball” spent within 50m of each zooplankton sampling station and the relative amount of zooplankton species caught at each station. Note the positive trend between time and Holmesimysis sculpta, and the negative trend relative to Neomysis sp. or Caprellidae.

Conversely, there is an inverse trend with two other zooplankton species:  Neomysis sp. (grey trend line) and Caprellidae (orange trend line). These results suggest that Eyeball has a foraging preference for areas where Holmesimysis sculpta (Fig. 6) is more abundant. Who would have known a whale could be so picky? Once the season comes to an end, I plan to use more of our data to continue to make discoveries about the foraging preferences of gray whales in Oregon.

“Applied conservation science”

By Dawn Barlow, M.S.
Ph.D. student, Department of Fisheries and Wildlife, Oregon State University

For years, I have said I want to do “applied conservation science”. As an undergraduate student at Pitzer College I was a double major in Biology and Environmental Policy. While I have known that I wanted to study the oceans on some level my whole life, and I have known for about a decade that I wanted to be a scientist, I realized in college that I wanted to learn how science could be a tool for effective conservation of the marine ecosystems that fascinate me.

Answering questions during my public defense seminar. Photo by Leila Lemos.

Just over a week ago, I successfully defended my MS thesis. When Leigh introduced me at the public seminar, she read a line from my initial letter to her expressing my interest in being her graduate student: “My passion for cetacean research lies not only in fascination of the animals but also how to translate our knowledge of their biology and ecological roles into effective conservation and management measures.” I believe I’ve grown and learned a lot in the two and a half years since I crafted that email and nervously hit send, but the statement is still true.

My graduate research in many ways epitomizes what I am passionate about. I am part of a team studying the ecology of blue whales in a highly industrial area of New Zealand. Not only is it a system in which we can address fascinating questions in ecology, it is also a region that experiences extensive pressure from human use and so all of our findings have direct management implications.

We recently published a paper documenting and describing this New Zealand blue whale population, and the findings reached audiences and news outlets far and wide. Leigh and I are headed to New Zealand for the first two weeks in July. During this time we will not only present our latest findings at the Society for Conservation Biology Oceania Conference, we will also meet with managers at the New Zealand Department of Conservation, speak with the Minister of Energy and Resources as well as the Minster of Conservation, meet with the CEO and Policy Advisor of PEPANZ (a representative group of oil and gas companies in New Zealand), and participate in a symposium of scientists and stakeholders aiming to establish goals for the protection of whales in New Zealand. Now, “applied conservation science” extends well beyond a section in the discussion of a paper outlining the implications of the findings for management.

A blue whale surfaces in front of a floating production storage and offloading (FPSO) vessel servicing the oil rigs in the South Taranaki Bight. Photo by Dawn Barlow. 

During our 2017 field season in New Zealand, Leigh and I found ourselves musing on the flying bridge of the research vessel about all the research questions still to be asked of this study system and these blue whales. How do they forage? What are their energetic demands? How does disturbance from oil and gas exploration impact their foraging and their energetic demands? Leigh smiled and told me, “You better watch out, or this will turn into your PhD.” I said that maybe it should. Now I am thrilled to immerse myself into the next phase of this research project and the next chapter of my academic journey as a PhD student. This work is applied conservation science, and I am a conservation biologist. Here’s to retaining my passion for ecology and fascination with my study system, while not losing sight of the implications and applications of my work for conservation. I am excited for what is to come!

Dawn Barlow and Dr. Leigh Torres aboard the R/V Star Keys during the 2017 blue whale field season in New Zealand. Photo by Todd Chandler.

Forecasting blue whale presence: Small steps toward big goals

By Dawn Barlow, MSc student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

In 2013, Leigh first published a hypothesis that the South Taranaki Bight region between New Zealand’s North and South Islands is important habitat for blue whales  (Torres 2013). Since then, we have collected three years of data and conducted dedicated analyses, so we now understand that a unique population of blue whales is found in New Zealand, and that they are present in the South Taranaki Bight year-round (Barlow et al. in press).

A blue whale surfaces in the South Taranaki Bight. Photo by Leigh Torres.

This research has garnered quite a bit of political and media attention. A major platform item for the New Zealand Green Party around the last election was the establishment of a marine mammal sanctuary in the South Taranaki Bight. When the world’s largest seismic survey vessel began surveying the South Taranaki Bight this summer for more oil and gas reserves using tremendously loud airguns, there were rallies on the lawn in front of Parliament featuring a large inflatable blue whale that the protesters affectionately refer to as “Janet”. Needless to say, blue whales have made their way into the spotlight in New Zealand.

Janet the inflatable blue whale accompanies protesters on the lawn in front of Parliament in Wellington, New Zealand. Image credit: Greenpeace.

Now that we know there is a unique population of blue whales in New Zealand, what is next? What’s next for me is an exciting combination of both ecology and conservation. If an effective sanctuary is to be implemented, it needs to be more than a simple box drawn on a map to check off a political agenda item—the sanctuary should be informed by our best ecological knowledge of the blue whales and their habitat.

In July, Leigh and I will attend the Society for Conservation Biology meeting in Wellington, New Zealand, and I’ll be giving a presentation titled “Cloudy with a chance of whales: Forecasting blue whale presence based on tiered, bottom-up models”. I’ll be the first to admit, I am not yet forecasting blue whale presence. But I am working my way there, step-by-step, through this tiered, bottom-up approach. In cetacean habitat modeling, we often assume that whale distribution on a foraging ground is determined by their prey’s distribution, and that satellite images of temperature and chlorophyll-a provide an accurate picture of what is going on below the surface. Is this true? With our three years of data including in situ oceanography, krill hydroacoustics, and blue whale distribution and behavior, we are in a unique position to test some of those assumptions, as well as provide managers with an informed management tool to predict blue whale distribution.

What questions will we ask using our data? Firstly, can in situ oceanography (i.e., thermocline depth and temperature, mixed layer depth) predict the distribution and density of blue whale prey (krill)? Then, can those prey patterns be accurately predicted in the absence of oceanographic measurements, using just satellite images? Next, we’ll bring the blue whales back into the picture to ask: can we predict blue whale distribution based on our in situ measurements of oceanography and prey? And finally, in the absence of in situ measurements (which is most often the case), can we forecast where the whales will be based just on remotely-sensed images of the region?

The transducer pole in the water off the RV Star Keys (left) deployed with the echosounder to collect prey availability data, including this image (right) of krill swarms near feeding blue whales. Photo by Leigh Torres.

So, cloudy with a chance of whales? Well, you’ll have to stay tuned for that story in the coming months. In the meantime, I can tell you that as daunting as it is to aggregate so many data streams, each step of the way has a piece of the story to tell. I can’t wait to see how it falls together, both from an ecological modeling perspective and a conservation management objective.

A blue whale surfaces in front of a floating production storage and offloading (FPSO) vessel which services the oil rigs in the South Taranaki Bight. Photo by Dawn Barlow.

 

References:

Torres, L. G. (2013). Evidence for an unrecognised blue whale foraging ground in New Zealand. New Zealand Journal of Marine and Freshwater Research47(2), 235-248.

Barlow, D. R., Torres, L. G., Hodge, K. B., Steel, D. Baker, C. S., Chandler, T. E., Bott, N., Constantine, R., Double, M. C., Gill, P., Glasgow, D., Hamner, R. M., Lilley, C., Ogle, M., Olson, P. A., Peters, C., Stockin, K. A., Tessaglia-Hymes, C. T., Klinck, H. (in press). Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endangered Species Research. 

Sea Otter Management in the U.S.

By Dominique Kone, Masters Student in Marine Resource Management

Since the first official legal protections in 1911, the U.S. has made great strides in recovering sea otter populations. While much of this progress is due to increased emphasis on understanding sea otter behavior, biology, and ecology, there are also several policies that have been just as instrumental in making sea otter conservation efforts successful. Here, I provide a brief overview of the current legal and regulatory policies used to manage sea otters in the U.S. and explain why having a base understanding of these tools can help our lab as we look into the potential reintroduction of sea otters to the Oregon coast.

Sea otter with pup, Prince William Sound, Alaska. Source: Patrick J. Endres

When we talk about sea otter management in the U.S., the two most obvious laws that come to mind are the Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA). In short, the MMPA seeks to prevent the take – including kill, harass, capture, or disturb – or importation of marine mammals and marine mammal products[1]. While the ESA seeks to protect and recover imperiled species – not just marine mammals – and the ecosystems which they depend upon[2]. Both laws are similar in the sense that their primary objectives are to protect and recover at-risk species. However, marine mammals will always be protected under the MMPA, but will only be protected under the ESA if the species is considered threatened or endangered.

On the federal level, the U.S. Fish and Wildlife Service (the Service) is primarily responsible for managing sea otter populations. In the U.S., we manage sea otter populations as five distinct stocks, which differ in their population size and geographic distribution – located in California, Washington, and Alaska state waters (Fig. 1). Because sea otters are divided into these single stocks, management decisions – such as recovery targets or reintroductions – are made on a stock-by-stock basis and are dependent on the stock’s population status. Currently, two of these stocks are federally-listed as threatened under the ESA. Therefore, these two stocks are granted protection under both the ESA and MMPA, while the remaining three stocks are only protected by the MMPA (at the federal level; state management may also apply).

Figure 1. Distribution (approximations of population centers) of sea otter stocks in the U.S. (SW = Southwest Alaskan; SC = Southcentral Alaskan; SE = Southeast Alaskan; WA = Washington, SCA = Southern/Californian)

While the MMPA and ESA are important federal laws, I would be remiss if I didn’t mention the important role that state laws and state agencies have in managing sea otters. According to the MMPA and ESA, if a state develops and maintains a conservation or recovery program with protections consistent with the standards and policies of the MMPA and/or ESA, then the Service may transfer management authority over to the state1,2. However, typically, the Service has opted to manage any stocks listed under the ESA, while states manage all other stocks not listed under the ESA.

Sea otter management in the states of Washington and California is a clear example of this dichotomy. The Washington sea otter stock is not listed under the ESA, and is therefore, managed by the Washington Department of Fish and Wildlife (WDFW), which developed the stock’s recovery plan[3]. In contrast, sea otters along the California coast are listed as threatened under the ESA, and the Service primarily manages the stock’s recovery[4].

Interestingly, sea otter management in Alaska is an exception to this rule. The Southeast and Southcentral sea otter stocks are not listed under the ESA, yet are still managed by the Service. However, the state recognizes sea otters as a species of greatest conservation need in the state’s Wildlife Action Plan, which acts as a recommendation framework for the management and protection of important species and ecosystems[5]. Therefore, even though the state is not the primary management authority for sea otters by law, they still play a role in protecting Alaskan sea otter populations through this action plan.

Table 1. Federal and state listing status of all sea otter stocks within U.S. coastal waters.

States have also implemented their own laws for protecting at-risk species. For instance, while the Washington sea otter stock is not listed under the ESA, it is listed as endangered under Washington state law4. This example raises an important example demonstrating that even if a stock isn’t federally-listed, it may still be protected on the state level, and is always protected under the MMPA. Therefore, if the federal and state listing status do not match, which is the case for most sea otter stocks in the U.S. (Table 1.), the stock still receives management protection at some level.

So why does this matter?

Each of the previously mentioned laws are prohibitive in nature, where the objectives are to prevent and discourage activities which may harm the stock of interest. Yet, agencies may grant exceptions – in the form of permits – for activities, such as scientific research, translocations, commercial/recreational fisheries operations, etc. The permit approval process will oftentimes depend on: (1) the severity or likelihood of that action to harm the species, (2) the species’ federal and state listing status, and (3) the unique approval procedures enforced by the agency. Activities that are perceived to have a high likelihood of harming a species, or involve a species that’s listed under the ESA, will likely require a longer and more arduous approval process.

A sea otter release in Monterey Bay, California. Source: Monterey Bay Aquarium Newsroom.

Understanding these various approval processes is vitally important for our work on the potential reintroduction of sea otters to Oregon because such an effort will no doubt require many permits and a thoughtful permit approval process. Each agency may have their own set of permits, administrative procedures, and approval processes. Therefore, it behooves us to have a clear understanding of these various processes relative to the state, agency, or stock involved. If, hypothetically, a stock is determined as a suitable candidate for reintroduction into Oregon waters, having this understanding will allow us to determine where our research can best inform the effort, what types of information and data are needed to inform the process, and to which agency or stakeholders we must communicate our research.

 

References:

[1] Marine Mammal Protection Act of 1972

[2] Endangered Species Act of 1973

[3] State of Washington. 2004. Sea Otter Recovery Plan. Washington Department of Fish and Wildlife: Wildlife Program

[4] U.S. Fish & Wildlife Service. 2003. Final Revised Recovery Plan for the Southern Sea Otter (Enydra lutris nereis).

[5] Alaska Department of Fish and Game. 2015. Alaska wildlife action plan. Juneau.

 

GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

A Marine Mammal Odyssey, Eh!

By Leila Lemos, PhD student

Dawn Barlow, MS student

Florence Sullivan, MS

The Society for Marine Mammalogy’s Biennial Conference on the Biology of Marine Mammals happens every two years and this year the conference took place in Halifax, Nova Scotia, Canada.

Logo of the Society for Marine Mammalogy’s 22nd Biennial Conference on the Biology of Marine Mammals, 2017: A Marine Mammal Odyssey, eh!

The conference started with a welcome reception on Sunday, October 22nd, followed by a week of plenaries, oral presentations, speed talks and posters, and two more days with different workshops to attend.

This conference is an important event for us, as marine mammalogists. This is the moment where we get to share our projects (how exciting!), get important feedback, and hear about different studies that are being conducted around the world. It is also an opportunity to network and find opportunities for collaboration with other researchers, and of course to learn from our colleagues who are presenting their work.

The GEMM Lab attending the opening plenaries of the conference!

The first day of conference started with an excellent talk from Asha de Vos, from Sri Lanka, where she discussed the need for increased diversity (in all aspects including race, gender, nationality, etc.) in our field, and advocated for the end of “parachute scientists” who come into a foreign (to them) location, complete their research, and then leave without communicating results, or empowering the local community to care or act in response to local conservation issues.  She also talked about the difficulty that researchers in developing countries face accessing research that is hidden behind journal pay walls, and encouraged everyone to get creative with communication! This means using blogs and social media, talking to science communicators and others in order to get our stories out, and no longer hiding our results behind the ivory tower of academia.  Overall, it was an inspirational way to begin the week.

On Thursday morning we heard Julie van der Hoop, who was this year’s recipient of the F.G. Wood Memorial Scholarship Award, present her work on “Drag from fishing gear entangling right whales: a major extinction risk factor”. Julie observed a decrease in lipid reserves in entangled whales and questioned if entanglements are as costly as events such as migration, pregnancy or lactation. Tags were also deployed on whales that had been disentangled from fishing gear, and researchers were able to see an increase in whale speed and dive depth.

Julie van der Hoop talks about different drag forces of fishing gears
on North Atlantic Right Whales.

There were many other interesting talks over the course of the week. Some of the talks that inspired us were:

— Stephen Trumble’s talk “Earplugs reveal a century of stress in baleen whales and the impact of industrial whaling” presented a time-series of cortisol profiles of different species of baleen whales using earplugs. The temporal data was compared to whaling data information and they were able to see a high correlation between datasets. However, during a low whaling season concurrent to the World War II in the 40’s, high cortisol levels were potentially associated to an increase in noise from ship traffic.

— Jane Khudyakov (“Elephant seal blubber transcriptome and proteome responses to single and repeated stress”) and Cory Champagne (“Metabolomic response to acute and repeated stress in the northern elephant seal”) presented different aspects of the same project. Jane looked at down/upregulation of genes (downregulation is when a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus; upregulation is the opposite: when the cell increases the quantity of cellular components) to check for stress. She was able to confirm an upregulation of genes after repeated stressor exposure. Cory checked for influences on the metabolism after administering ACTH (adrenocorticotropic hormone: a stimulating hormone that causes the release of glucocorticoid hormones by the adrenal cortex. i.e., cortisol, a stress related hormone) to elephant seals. By looking only at the stress-related hormone, he was not able to differentiate acute from chronic stress responses. However, he showed that many other metabolic processes varied according to the stress-exposure time. This included a decrease in amino acids, mobilization of lipids and upregulation of carbohydrates.

— Jouni Koskela (“Fishing restrictions is an essential protection method of the Saimaa ringed seal”) talked about the various conservation efforts being undertaken for the endangered Lake Saimaa ringed seal. Gill nets account for 90% of seal pup mortality, but if new pups can reach 20kg, only 14% of them will drown in these fishing net entanglements. Working with local industry and recreational interests, increased fishing restrictions have been enacted during the weaning season. In addition to other year-round restrictions, this has led to a small, but noticeable upward trend in pup production and population growth! A conservation success story is always gratifying to hear, and we wish these collaborative efforts continued future success.

— Charmain Hamilton (“Impacts of sea-ice declines on a pinnacle Arctic predator-prey relationship: Habitat, behaviour, and spatial overlap between coastal polar bears and ringed seals”) gave a fascinating presentation looking at how changing ice regimes in the arctic are affecting spatial habitat use patterns of polar bears. As ice decreases in the summer months, the polar bears move more, resulting in less spatial overlap with ringed seal habitat, and so the bears have turned to targeting ground nesting seabirds.  This spatio-temporal mismatch of traditional predator/prey has drastic implications for arctic food web dynamics.

— Nicholas Farmer’s presentation on a Population Consequences of Disturbance (PCoD) model for assessing theoretical impacts of seismic survey on sperm whale population health had some interesting parallels with new questions in our New Zealand blue whale project. By simulating whale movement through modeled three-dimensional sound fields, he found that the frequency of the disturbance (i.e., how many days in a row the seismic survey activity persisted) was very important in determining effects on the whales. If the seismic noise persists for many days in a row, the sperm whales may not be able to replenish their caloric reserves because of ongoing disturbance. As you can imagine, this pattern gets worse with more sequential days of disturbance.

— Jeremy Goldbogen used suction cup tags equipped with video cameras to peer into an unusual ecological niche: the boundary layer of large whales, where drag is minimized and remoras and small invertebrates compete and thrive. Who would have thought that at a marine mammal conference, a room full of people would be smiling and laughing at remoras sliding around the back of a blue whale, or barnacles filter feeding as they go for a ride with a humpback whale? Insights from animals that occupy this rare niche can inform improvements to current tag technologies.

The GEMM Lab was well represented this year with six different talks: four oral presentations and two speed talks! It is evident that all of our hard work and preparation, such as practicing our talks in front of our lab mates two weeks in advance, paid off.  All of the talks were extremely well received by the audience, and a few generated intelligent questions and discussion afterwards – exactly as we hoped.  It was certainly gratifying to see how packed the room was for Sharon’s announcement of our new method of standardizing photogrammetry from drones, and how long the people stayed to talk to Dawn after her presentation about an unique population of New Zealand blue whales – it took us over an hour to be able to take her away for food and the celebratory drinks she deserved!

GEMM Lab members on their talks. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

 

GEMM Lab members at the closing celebration. From left to right: Florence Sullivan, Leila Lemos, Amanda Holdman, Solène Derville, and Dawn Barlow.
We are not always serious, we can get silly sometimes!

The weekend after the conference many courageous researchers who wanted to stuff their brains with even more specialized knowledge participated in different targeted workshops. From 32 different workshops that were offered, Leila chose to participate in “Measuring hormones in marine mammals: Current methods, alternative sample matrices, and future directions” in order to learn more about the new methods, hormones and matrices that are being used by different research groups and also to make connections with other endocrinologist researchers. Solène participated in the workshop “Reproducible Research with R, Git, and GitHub” led by Robert Shick.  She learned how to better organize her research workflow and looks forward to teaching us all how to be better collaborative coders, and ensure our analysis is reproducible by others and by our future selves!

On Sunday none of us from the GEMM Lab participated in workshops and we were able to explore a little bit of the Bay of Fundy, an important area for many marine mammal species. Even though we didn’t spot any marine mammals, we enjoyed witnessing the enormous tidal exchange of the bay (the largest tides in the world), and the fall colors of the Annaoplis valley were stunning as well. Our little trip was fun and relaxing after a whole week of learning.

The beauty of the Bay of Fundy.
GEMM Lab at the Bay of Fundy; from left to right: Kelly Sullivan (Florence’s husband and a GEMM Lab fan), Florence Sullivan, Dawn Barlow, Solène Derville, and Leila Lemos.
We do love being part of the GEMM Lab!

It is amazing how refreshing it is to participate in a conference. So many ideas popping up in our heads and an increasing desire to continue doing research and work for conservation of marine mammals. Now it’s time to put all of our ideas and energy into practice back home! See you all in two years at the next conference in Barcelona!

Flying out of Halifax!

Conservation at the Science-to-Policy Interface

By Dominique Kone, Masters Student in Marine Resource Management

How can I practice conservation? As an early-career professional and graduate student, this is the very question I ask myself, constantly. In such an interdisciplinary field, there are several ways someone can address issues and affect change in conservation, even if they don’t call themselves a conservationist. However, there’s no one-size-fits-all method. A marine ecologist will likely try to solve a problem differently than a lawyer, advocate, journalist and so forth. Therefore, I want to explain how I practice conservation, how I develop solutions, and how this has factored into my decision to come to grad school and apply my trade to our sea otter project.

Jane Lubchenco – marine ecologist and environmental scientists – replanting coral. Photo Credit: Oregon State University.

Like many others in conservation, I have a deep appreciation for the field of ecology. Yet, I also really enjoy being involved in policy and management issues. Not just how they’re decided upon, but what factors and variables go into those decisions, and ultimately how those choices impact the marine environment. But most importantly, I’m curious about how these two arenas – science and policy – intersect and complement each other. Yet again, there are an endless number of ways one can practice conservation at the science-policy interface.

Think of this science-policy space as a spectrum or a continuum, if you will. For those who fall on one end of the spectrum, their work may be heavily dominated by pure science or research. While those who fall on the other end, conduct more policy-oriented work. And those in the middle do some combination of the two. Yet, what connects us all is the recognition of the value in science-based decision-making. Because a positive conservation result relies on both elements.

Infographic demonstrating the interface between conservation science and policy. Photo Credit: ZSL Institute of Zoology.

I’m fascinated by this science- policy space and the role that science can play in informing the management and protection of at-risk marine species and ecosystems. From my perspective, scientific evidence and the scientific community are essential resources to help society make better-informed decisions. However, we don’t always take advantage of those resources. On the policy end of the spectrum, there may be a lack of understanding of complex scientific concepts. Yet, on the other end, scientists may be inadvertently making their research inaccessible or they may not fully understand the data or knowledge needs of the decision-makers. Therefore, research that was meant to be useful, sometimes completely misses the mark, and therefore has minimal conservation impact.

Recognizing this persistent problem, I practice conservation as a facilitator, where I identify gaps in knowledge and strategically develop science-based solutions aimed at filling those gaps and addressing specific policy or management issues. In my line of work, I’m dedicated to working within the scientific community to develop targeted research projects that are well placed and thought-out to enable a greater impact. While I associate myself with the science end of the spectrum, I also interact with decision-makers on the other end to better understand the various factors and variables considered in decisions. This requires me to have a deeper understanding of the process by which decision-makers formulate policies and management strategies, how science fits within those decision-making process, and any potential gaps in knowledge or data that need to be filled to facilitate responsible decisions.

A commercial fishing vessel. Photo Credit: NOAA Fisheries.

A simple example of this is the use of stock assessments in the management of commercially important fisheries. Catch limits may seem like simple policies, but we often do not think about the “science behind the scenes” and the multitude of data needed by managers to set those limits. Managers must consider many variables to determine catch limits that will not result in depleted stocks. Without robust scientific data, many of these fisheries catch limits would be too high or too low.

Science protest in Washington, DC. Photo Credit: AP Photo/Marcio Jose Sanchez.

This may all sound like theoretical mumbo jumbo, but it is real, and I will apply this crossover between science and policy in my thesis. The potential reintroduction of sea otters to Oregon presents a multitude of challenges, but the challenge is exactly why I came to grad school in the first place! This project will allow me to take what I’ve learned and develop research questions specifically aimed at providing data and information that managers must consider in their deliberations of sea otter reintroduction. In this project I will be pushed to objectively assess and analyze – as a scientist – a pressing conservation topic from a variety of angles, gain advice from other experts, and develop and execute research that will influence policy decisions. This project provides the perfect opportunity for me to exercise my creativity, allow my curiosity to run rampant, and practice conservation in my own unique way.

 

Photo Credit: Smithsonian.

Everyone processes and solves problems differently. For those of us practicing conservation, we each tackle issues in our own way depending on where we fall within the science-to-policy spectrum. For me, I address issues as a scientist, with my techniques and strategies derived from a foundation in the political and management context.

Additional Resources:

Bednarek et al. 2015. Science-policy intermediaries from a practitioner’s perspective: The Lenfest Ocean Program experience. Science and Public Policy. 43(2). p. 291-300. (Link here)

Lackey, R. T. 2007. Science, Scientists, and Policy Advocacy. Conservation Biology. 21(1). p. 12-17. (Link here)

Cortner, H. J. 2000. Making science relevant to environmental policy. Environmental Science & Policy. 3(1). p. 21-30. (Link here)

Hearing is believing

Dr. Leigh Torres, Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Oregon State University

Dr. Holger Klinck, Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University

For too long the oil and gas industry has polluted the ocean with seismic airgun noise with little consequence. The industry uses seismic airguns in order to find their next lucrative reserve under the seafloor, and because their operations are out of sight and the noise is underwater many have not noticed this deafening (literally1) noise. As terrestrial and vision-dependent animals, we humans have a hard time appreciating the importance of sound in the marine environment. Most of the ocean is a dark place, where vision does not work well, so many animals are dependent on sound to survive. Especially marine mammals like whales and dolphins.

But, hearing is believing, so let’s have a listen to a recording of seismic airguns firing in the South Taranaki Bight (STB) of New Zealand, a known blue whale feeding area. This is a short audio clip of a seismic airgun firing every ~8 seconds (a typical pattern). Before you hit play, close your eyes and imagine you are a blue whale living in this environment.

Now, put that clip on loop and play it for three months straight. Yes, three months. This consistent, repetitive boom is what whales living in a region of oil and gas exploration hear, as seismic surveys often last 1-4 months.

So, how loud is that, really? Your computer or phone speaker is probably not good enough to convey the power of that sound (unless you have a good bass or sub-woofer hooked up). Industrial seismic airgun arrays are among the loudest man-made sources2 and the noise emitted by these arrays can travel thousands of kilometers3. Noise from a single seismic airgun survey can blanket an area of over 300,000 km2, raising local background noise levels 100-fold4.

Now, oil and gas representatives frequently defend their seismic airgun activities with two arguments, both of which are false. You can hear both these arguments made recently in this interview by a representative of the oil and gas industry in New Zealand defending a proposal to conduct a 3 month-long seismic survey in the STB while blue whales will be feeding there.

First, the oil and gas industry claim that whales and dolphins can just leave the area if they choose. But this is their home, where they live, where they feed and breed. These habitats are not just anywhere. Blue whales come to the STB to feed, to sustain their bodies and reproductive capacity. This habitat is special and is not available anywhere else nearby, so if a whale leaves the STB because of noise disturbance it may starve. Similarly, oil and gas representatives have falsely claimed that because whales stay in the area during seismic airgun activity this indicates they are not being disturbed. If you had the choice of starving or listening to seismic booming you might also choose the latter, but this does not mean you are not disturbed (or annoyed and stressed). Let’s think about this another way: imagine someone operating a nail gun for three months in your kitchen and you have nowhere else to eat. You would stay to feed yourself, but your stress level would elevate, health deteriorate, and potentially have hearing damage. During your next home renovation project you should be happy you have restaurants as alternative eateries. Whales don’t.

Second, the oil and gas industry have claimed that the frequency of seismic airguns is out of the hearing range of most whales and dolphins. This statement is just wrong. Let’s look at the spectrogram of the above played seismic airgun audio clip recorded in the STB. A spectrogram is a visual representation of sound (to help us vision-dependent animals interpret sound). Time is on the horizontal axis, frequency (pitch) is on the vertical axis, and the different colors on the image indicate the intensity of sound (loudness) with bright colors illustrating areas of higher noise. Easily seen is that as the seismic airgun blasts every ~8 seconds, there is elevated noise intensity across all frequencies (bright yellow, orange and green bands). This noise intensity is especially high in the 10 – 80 Hz frequency range, which is exactly where many large baleen whales – like the blue whale – hear and communicate.

A spectrogram of the above played seismic airgun audio clip recorded in the South Taranaki Bight, New Zealand. Airgun pulses every ~8 seconds are evident by elevated noise intensity across all frequencies (bright yellow, orange and green bands), which are especially intense in the 10 – 80 Hz frequency range.

In the big, dark ocean, whales use sound to communicate, find food, and navigate. So, let’s try to imagine what it’s like for a whale trying to communicate in an environment with seismic airgun activity. First, let’s listen to a New Zealand blue whale call (vocalization) recorded in the STB. [This audio clip is played at 10X the original speed so that it is more audible to the human hearing frequency range. You can see the real time scale in the top plot.]

Now, let’s look at a spectrogram of seismic airgun pulses and a blue whale call happening at the same time. The seismic airgun blasts are still evident every ~8 seconds, and the blue whale call is also evident at about the 25 Hz frequency (within the pink box). Because blue whales call at such a low frequency humans cannot hear their call when played at normal speed, so you will only hear the airgun pulses if you hit play. But you can see in the spectrogram that five airgun blasts overlapped with the blue whale call.

No doubt this blue whale heard the repetitive seismic airgun blasts, and vocalized in the same frequency range at the same time. Yet, the blue whale’s call was partially drowned out by the intense seismic airgun blasts. Did any other whale hear it? Could this whale hear other whales? Did it get the message across? Maybe, but probably not very well.

Some oil and gas representatives point toward their adherence to seismic survey guidelines and use of marine mammal observers to reduce their impacts on marine life. In New Zealand these guidelines only stop airgun blasting when animals are within 1000 m of the vessel (1.5 km if a calf is present), yet seismic airgun blasts are so intense that the noise travels much farther. So, while these guidelines may be a start, they only prevent hearing damage to whales and dolphins by stopping airguns from blasting right on top of animals.

So, what does this mean for whales and other marine animals living in habitat where seismic airguns are operating? It means their lives are disturbed and dramatically altered. Multiple scientific studies have shown that whales change behavior5, distribution6, and vocalization patterns7 when seismic airguns are active. Other marine life like squid8, spiny lobster9, scallops10, and plankton11 also suffer when exposed to airgun noise. The evidence has mounted. There is no longer a scientific debate: seismic airguns are harmful to marine animals and ecosystems.

What we are just starting to study and understand is the long-term and population level effects of seismic airguns on whales and other marine life. How do short term behavioral changes, movement to different areas, and different calling patterns impact an individual’s ability to survive or a population’s ability to persist? These are the important questions that need to be addressed now.

Seismic airgun surveys to find new oil and gas reserves are so pervasive in our global oceans, that airgun blasts are now heard year round in the equatorial Atlantic3, 12. As reserves shrink on land, the industry expands their search in our oceans, causing severe and persistent consequences to whales, dolphins and other marine life. The oil and gas industry must take ownership of the impacts of their seismic airgun activities. It’s imperative that political, management, scientific, and public pressure force a more complete assessment of each proposed seismic airgun survey, with an honest evaluation of the tradeoff between economic benefits and costs to marine life.

Here are a few ways we can reduce the impact of seismic airguns on marine life and ecosystems:

  • Restrict seismic airgun operation in and near sensitive environmental areas, such as marine mammal feeding and breeding areas.
  • Prohibit redundant seismic surveys in the same area. If one group has already surveyed an area, that data should be shared with other groups, perhaps after an embargo period.
  • Cap the number and duration of seismic surveys allowed each year by region.
  • Promote the use of renewable energy sources.
  • Develop new and quieter survey methods.

Even though we cannot hear the relentless booming, this does not mean it’s not happening and harming animals. Please listen one more time to 1 minute of what whales hear for months during seismic airgun operations.

 

More information on seismic airgun surveys and their impact on marine life:

Boom, Baby, Boom: The Environmental Impacts of Seismic Surveys

A Review of the Impacts of Seismic Airgun Surveys on Marine Life

Sonic Sea: Emmy award winning film about ocean noise pollution and its impact on marine mammals.

Atlantic seismic will impact marine mammals and fisheries

 

References:

  1. Gordon, J., et al., A review of the effects of seismic surveys on marine mammals. Marine Technology Society Journal, 2003. 37(4): p. 16-34.
  2. National Research Council (NRC), Ocean Noise and Marine Mammals. 2003, National Academy Press: Washington. p. 204.
  3. Nieukirk, S.L., et al., Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009. The Journal of the Acoustical Society of America, 2012. 131(2): p. 1102-1112.
  4. Weilgart, L., A review of the impacts of seismic airgun surveys on marine life. 2013, Submitted to the CBD Expert Workshop on Underwater Noise and its Impacts on Marine and Coastal Biodiversity 25-27 February 2014: London, UK. .
  5. Miller, P.J., et al., Using at-sea experiments to study the effects of airguns on the foraging behavior of sperm whales in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 2009. 56(7): p. 1168-1181.
  6. Castellote, M., C.W. Clark, and M.O. Lammers, Acoustic and behavioural changes by fin whales (Balaenoptera physalus) in response to shipping and airgun noise. Biological Conservation, 2012. 147(1): p. 115-122.
  7. Di lorio, L. and C.W. Clark, Exposure to seismic survey alters blue whale acoustic communication. Biology Letters, 2010. 6(1): p. 51-54.
  8. Fewtrell, J. and R. McCauley, Impact of air gun noise on the behaviour of marine fish and squid. Marine pollution bulletin, 2012. 64(5): p. 984-993.
  9. Fitzgibbon, Q.P., et al., The impact of seismic air gun exposure on the haemolymph physiology and nutritional condition of spiny lobster, Jasus edwardsii. Marine Pollution Bulletin, 2017.
  10. Day, R.D., et al., Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proceedings of the National Academy of Sciences, 2017. 114(40): p. E8537-E8546.
  11. McCauley, R.D., et al., Widely used marine seismic survey air gun operations negatively impact zooplankton. Nature Ecology & Evolution, 2017. 1(7): p. s41559-017-0195.
  12. Haver, S.M., et al., The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 2017. 122: p. 95-104.