Eyes from Space: Using Remote Sensing as a Tool to Study the Ecology of Blue Whales

By Christina Garvey, University of Maryland, GEMM Lab REU Intern

It is July 8th and it is my 4th week here in Hatfield as an REU intern for Dr. Leigh Torres. My name is Christina Garvey and this summer I am studying the spatial ecology of blue whales in the South Taranaki Bight, New Zealand. Coming from the east coast, Oregon has given me an experience of a lifetime – the rugged shorelines continue to take my breath away and watching sea lions in Yaquina Bay never gets old. However, working on my first research project has by far been the greatest opportunity and I have learned so much in so little time. When Dr. Torres asked me to contribute to this blog I was unsure of how I would write about my work thus far but I am excited to have the opportunity to share the knowledge I have gained with whoever reads this blog post.

The research project that I will be conducting this summer will use remotely sensed environmental data (information collected from satellites) to predict blue whale distribution in the South Taranaki Bight (STB), New Zealand. Those that have read previous blogs about this research may remember that the STB study area is created by a large indentation or “bight” on the southern end of the Northern Island. Based on multiple lines of evidence, Dr. Leigh Torres hypothesized the presence of an unrecognized blue whale foraging ground in the STB (Torres 2013). Dr. Torres and her team have since proved that blue whales frequent this region year-round; however, the STB is also very industrial making this space-use overlap a conservation concern (Barlow et al. 2018). The increasing presence of marine industrial activity in the STB is expected to put more pressure on blue whales in this region, whom are already vulnerable from the effects of past commercial whaling (Barlow et al. 2018) If you want to read more about blue whales in the STB check out previous blog posts that talk all about it!

Figure 1. A blue whale surfaces in front of a floating production storage and offloading vessel servicing the oil rigs in the South Taranaki Bight. Photo by D. Barlow.
Figure 2. South Taranaki Bight, New Zealand, our study site outlined by the red box. Kahurangi Point (black star) is the site of wind-driven upwelling system.

The possibility of the STB as an important foraging ground for a resident population of blue whales poses management concerns as New Zealand will have to balance industrial growth with the protection and conservation of a critically endangered species. As a result of strong public support, there are political plans to implement a marine protected area (MPA) in the STB for the blue whales. The purpose of our research is to provide scientific knowledge and recommendations that will assist the New Zealand government in the creation of an effective MPA.

In order to create an MPA that would help conserve the blue whale population in the STB, we need to gather a deeper understanding of the relationship between blue whales and this marine environment. One way to gain knowledge of the oceanographic and ecological processes of the ocean is through remote sensing by satellites, which provides accessible and easy to use environmental data. In our study we propose remote sensing as a tool that can be used by managers for the design of MPAs (through spatial and temporal boundaries). Satellite imagery can provide information on sea surface temperature (SST), SST anomaly, as well as net primary productivity (NPP) – which are all measurements that can help describe oceanographic upwelling, a phenomena that is believed to be correlated to the presence of blue whales in the STB region.

Figure 3. The stars of the show: blue whales. A photograph captured from the small boat of one animal fluking up to dive down as another whale surfaces close by. (Photo credit: L. Torres)

Past studies in the STB showed evidence of a large upwelling event that occurs off the coast of Kahurangi Point (Fig. 2), on the northwest tip of the South Island (Shirtcliffe et al. 1990). In order to study the relationship of this upwelling to the distribution of blue whales, I plan to extract remotely sensed data (SST, SST anomaly, & NPP) off the coast of Kahurangi and compare it to data gathered from a centrally located site within the STB, which is close to oil rigs and so is of management interest. I will first study how decreases in sea surface temperature at the site of upwelling (Kahurangi) are related to changes in sea surface temperature at this central site in the STB, while accounting for any time differences between each occurrence. I expect that this relationship will be influenced by the wind patterns, and that there will be changes based on the season. I also predict that drops in temperature will be strongly related to increases in primary productivity, since upwelling brings nutrients important for photosynthesis up to the surface. These dips in SST are also expected to be correlated to blue whale occurrence within the bight, since blue whale prey (krill) eat the phytoplankton produced by the productivity.

Figure 4. A blue whale lunges on an aggregation of krill. UAS piloted by Todd Chandler.

To test the relationships I determine between remotely sensed data at different locations in the STB, I plan to use blue whale observations from marine mammal observers during a seismic survey conducted in 2013, as well as sightings recorded from the 2014, 2016, and 2017 field studies led by Dr. Leigh Torres. By studying the statistical relationships between all of these variables I hope to prove that remote sensing can be used as a tool to study and understand blue whale distribution.

I am very excited about this research, especially because the end goal of creating an MPA really gives me purpose. I feel very lucky to be part of a project that could make a positive impact on the world, if only in just a little corner of New Zealand. In the mean time I’ll be here in Hatfield doing the best I can to help make that happen.

References: 

Barlow DR, Torres LG, Hodge KB, Steel D, Baker CS, Chandler TE, Bott N, Constantine R, Double MC, Gill P, Glasgow D, Hamner RM, Lilley C, Ogle M, Olson PA, Peters C, Stockin KA, Tessaglia-hymes CT, Klinck H (2018) Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger Species Res 36:27–40.

Shirtcliffe TGL, Moore MI, Cole AG, Viner AB, Baldwin R, Chapman B (1990) Dynamics of the Cape Farewell upwelling plume, New Zealand. New Zeal J Mar Freshw Res 24:555–568.

Torres LG (2013) Evidence for an unrecognised blue whale foraging ground in New Zealand. New Zeal J Mar Freshw Res 47:235–248.

A Summer of “Firsts” for Team Whale Storm

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

To many people, six weeks may seem like a long time. Counting down six weeks until your favourite TV show airs can feel like time dragging on slowly (did anyone else feel that way waiting for Blue Planet II to be released?). Or crossing off the days on your calendar toward that much-needed holiday that is still six weeks away can feel like an eternity. It makes sense that six weeks should feel like a long time. After all, six weeks are approximately a ninth of an entire year. Yet, I can assure you that if you asked anyone on my research team this summer whether six weeks was a long time, they would all say no.

As I watched each of my interns present our research to a room of 50 engaged community members (Fig. 1) after our six week research effort, I couldn’t help but feel an overwhelming sense of pride for all of them at how far they had come during the course of the field season.

Figure 1. Our audience at the community presentation on August 31. Photo by Leigh Torres.

On the very first day of our two-week training back in July, I gave my team an introductory presentation covering gray whales, their ecology, what the next six weeks would look like, how this project had developed and its results to date (Quick side-note here: I want to give a huge shout out to Florence and Leigh as this project would not be what it is today without their hard work and dedication as they laid the groundwork for it three years ago and have continued to improve and expand it). I remember the looks on my interns’ faces and the phrase that comes to mind is ‘deer in headlights’. It isn’t surprising that this was the case as this internship was the first time any of them had done marine mammal field work, or any kind of field work for that matter. It makes me think back to my first taste of field work. I was a fresh high school graduate and volunteering with a bottlenose dolphin research group. I remember feeling out of place and unsure of myself, both in terms of data collection skills but also having to live with the same people I had worked with all day. But as the first few days turned into the first few weeks, I grew into my role and by the end of my time there, I felt like an expert in what I was doing. Based on the confidence with which my interns presented our gray whale foraging ecology research to an audience just over a week ago, I know that they too had become experts in these short six weeks. Experts in levelling a theodolite, in sighting a blow several kilometres out from our cliff site, in kayaking in foggy conditions, in communicating effectively in high stress situations – the list goes on and on.

While you may have read the previous blog posts written by each of my interns in the last four weeks and thus have a sense of who they are, I want to tell you a little more about each of these hardworking undergraduates that played a large role in making this year’s Port Orford gray whale season so effective. Although we did not have any local high school interns this year, the whole team hails from Oregon, specifically from Florence, Sweet Home and Portland.

Figure 2. Haley on the cliff equipped with the camera waiting for a whale to surface. Photo by Cynthia Leonard.

Haley Kent (Fig. 2), my co-captain and Marine Studies Initiative (MSI) intern, an Environmental Science major, is going into her senior year at OSU this fall. She is focused and driven, which I know will enable her to pursue her dream of becoming a shark researcher (I can’t even begin to describe her excitement when we saw the thresher shark on our GoPro video). I couldn’t have asked for a better right hand person for my first year taking over this project and I am excited to see what results she will reveal through her project of individual gray whale foraging preferences. Also, Haley has a big obsession for board games and provided the team with many evenings of entertainment thanks to Munchkin and King of Tokyo.

Figure 3. Dylan in the stern of the kayak on a foggy day reeling down the GoPro stick on the downrigger. Photo by Haley Kent.

Dylan Gregory (Fig. 3) is transferring from Portland Community College and is going to be an OSU junior this fall. Not only was Dylan always extremely helpful in working with me to come up with ways to troubleshoot or fix gear, but his portable speaker and long list of eclectic podcasts always made him a very good cliff team partner. He was also Team Whale Storm’s main chef in the kitchen, and while some of his dishes caused tears & sweat among some team members (Dylan is a big fan of spices), there were never any leftovers, indicating how delicious the food was.

Figure 4. Robyn on one of our day’s off visiting the gigantic Redwoods in California. Photo by Haley Kent.

Robyn Norman (Fig. 4) will be a sophomore at OSU this fall and her commitment to zooplankton identification has been invaluable to the project. Last year when she was a freshman, Robyn was given our zooplankton samples from 2017, a few identification guides and instructions on how to use the dissecting microscope, before she was left to her own devices. Her level of independence and dedication as a freshman was incredible and I am very grateful for the time and skills she has given to this work. Besides this though, Robyn always brought an element of happiness to the room and I can speak on behalf of the rest of the team, that when she was gone for a week on a dive trip, the house did not feel the same without her.

Figure 5. Hayleigh Middleton at the community presentation. Her dry humour and quips earned her a lot of laughter from the audience keeping them entertained. Photo by Tom Calvanese.

Hayleigh Middleton (Fig. 5), a fresh high school graduate and freshly turned 18 during the project, is starting as a freshman at OSU this fall. She is extremely perceptive and would (thankfully) often remind others of tasks that they had forgotten to do (like take the batteries out of the theodolite or to mention the Secchi depth on the GoPro videos). I was very impressed by Hayleigh’s determination to continue working on the kayak despite her propensity for sea sickness (though after a few days we did remedy this by giving her raw ginger to chew on – not her favourite flavour or texture but definitely very, very effective!). She is inquisitive about almost everything and I know she will do very well in her first year at OSU.

Thank you, Team Whale Storm (Fig. 6), for giving me six weeks of your summer and for making my first year as project leader as seamless as it could have been! Without each and every one of you, I would not have been able to survey for 149.2 hours on the cliff, collect over 300 zooplankton samples, identify 31 gray whales, or launch a tandem kayak at 6:30 am every morning.

Figure 6. Team Whale Storm. Back row, from left to right: Haley Kent, Robyn Norman, Hayleigh Middleton, Dylan Gregory. Front row, from left to right: Tom Calvanese, Dr. Leigh Torres, Lisa Hildebrand. Photo by Mike Baran.

My interns were not the only ones to experience many “firsts” during this field season. I learned many new things for the first time right alongside them. While taking leadership is not a foreign concept to me, these six weeks were my first real experience of leading a project and a team for a sustained period of time. Managing teams, delegating tasks and compiling data felt gratifying because I felt like I was exactly where I should be (Fig. 7).

Figure 7. From left to right: Tom, myself, Hayleigh & Dylan on the cliff site looking for whales. Photo by Leigh Torres.
Figure 8. Haley & I on a cold evening out on the water but very excited to have gotten back the GoPro stick retrieved by divers after it had been stuck in a crevice for over 5 days. Photo by Lisa Hildebrand.

I dealt with many daunting tasks, yet thanks to the support of my interns, as well as Tom (Port Orford field station’s incredible station manager), Florence and Leigh, I learned how to resolve my problems: I fixed and replaced broken or lost gear (I am not a very mechanically inclined person; Fig. 8), budgeted food for five hungry people doing tiring field work (I’ve only ever budgeted for one person previously), and taught people how to use gear that I had not often used before (I can say now that the theodolite and I are friends, but this wasn’t the case for the first few weeks…).

 

Figure 9. Me with all the gear packed into the truck ready to leave Port Orford after the end of the field season. Photo by Haley Kent.

In the lead up to the summer field season this year, Leigh said to me, in one of the many emails we exchanged, that leading the project was a big task but that it was just six weeks long. She suggested that I rest up and get organised as much as I could ahead of time because, after all, the data collected this summer was going to be my thesis data, so I would want it to be as good as possible. Looking back, she couldn’t have been more right – the six weeks simply flew by, I did need the rest she had advised, and it definitely was a big task. I can’t wait for it to happen all over again next summer.

Looking through the scope: A world of small marine bugs

By Robyn Norman, GEMM Lab summer 2018 intern, OSU undergraduate

Although the average human may think all zooplankton are the same, to a whale, not all zooplankton are created equal. Just like us, different whales tend to favor different types of food over others. Thus, creating a meal perfect for each individual preference. Using a plankton net off the side of our kayak, each day we take different samples, hoping to figure out more about prey and what species the whales, we see, like best. These samples are then transported back to the lab for analysis and identification. After almost a year of identifying zooplankton and countless hours of looking through the microscope you would think I would have seen everything these tiny organisms have to offer.  Identifying mysid shrimp and other zooplankton to species level can be extremely difficult and time consuming, but equally rewarding. Many zooplankton studies often stop counting at 300 or 400 organisms, however in one very long day in July, I counted over 2,000 individuals. Zooplankton tend to be more difficult to work with due to their small size, fragility, and large quantity.

Figure 1. A sample fresh off the kayak in the beginning stages of identification. Photo by Robyn Norman.

A sample that looks quick and easy can turn into a never-ending search for the smallest of mysids. Most of the mysids that I have sorted can be as small as 5 mm in length. Being difficult to identify is an understatement. Figure 1 shows a sample in the beginning stages of analysis, with a wide range of mysids and other zooplankton. Different species of mysid shrimp generally have the same body shape, structure, size, eyes and everything else you can think of. The only way to easily tell them apart is by their telson, which is a unique structure of their tail. Their telsons cannot be seen with the naked eye and it can also be hard to find with a microscope if you do not know exactly what you are looking for.

 

Throughout my time identifying these tiny creatures I have found 9 different species of mysid from this gray whale foraging ecology project in Port Orford from the 2017 summer. But in 2018 three mysid species have been particularly abundant, Holmesimysis sculpta, Neomysis rayii, and Neomysis mercedis.

Figure 2. Picture taken with microscope of a Holmesimysis sculpta telson. Photo by Robyn Norman.

H. sculpta has a unique telson with about 18 lateral spines that stop as they reach the end of the telson (Figure 2). The end of the telson has 4 large spines that slightly curve to make a fork or scoop-like shape. From my own observations I have also noticed that H. sculpta has darker coloring throughout their bodies and are often heavily pregnant (or at least during the month of August). Neomysis rayii and Neomysis mercedis have been extremely difficult to identify and work with. While N. rayii can grow up to 65 mm, they can also often be the same small size as N. mercedis. The telsons of these two species are very similar, making them too similar to compare and differentiate. However, N. rayii can grow substantially bigger than N. mercedis, making the bigger shrimp easier to identify. Unfortunately, the small N. rayii still give birth to even smaller mysid babies, which can be confused as large N. mercedis. Identifying them in a timely manner is almost impossible. After a long discussion, we decided it would be easier to group these two species of Neomysis together and then sub-group by size. Our three categories were 1-10 mm, 11-15 mm, 16+ mm. According to the literature, N. mercedis are typically 11-15 mm meaning that anything over this size should be a N. rayii (McLaughlin 1980).

Figure 3. Microscopic photo of a gammarid. Photo source: WikiMedia.
Figure 4. Caprellidae found in sample with unique coloration. Photo by Robyn Norman.

While mysids comprise the majority of our samples, they are not the only zooplankton that I see. Amphipods are often caught along with the shrimp. Gammarids look like the terrestrial potato bug and can grow larger than some species of mysid (Fig. 3).

As well as, Caprellidae (Fig. 4) that remind me of little tiny aliens as they have large claws compared to their body size, making it hard to get them out of our plankton net. These impressive creatures are surprisingly hardy and can withstand long times in the freezer or being poked with tweezers under a microscope without dying.

In 2017, there was a high abundance of amphipods found in both of our study sites, Mill Rocks and Tichenor Cove. Mill Rocks surprisingly had 4 times the number of amphipods than Tichenor Cove. This result could be one of the possible reasons gray whales were observed more in Mill Rocks last year. Mill Rocks also has a substantial amount of kelp, a popular place for mysid swarms and amphipods. The occurrence of mysids at each of these sites was almost equal, whereas amphipods were almost exclusively found at Mill Rocks. Mill Rocks also had a higher average number of organisms than Tichenor Cove per samples, potentially creating better feeding grounds for gray whales here in Port Orford.

Analyzing the 2018 data I can already see some differences between the two years. In 2018 the main species of mysid that we are finding in both sites are Neomysis sp. and Holmesimysis sculpta, whereas in 2017 Alienacanthomysis macropsis, a species of mysid identified by their long eye stalks and blunt telson, made up the majority of samples from Tichenor Cove. There has also been a large decrease in amphipods from both locations compared to last year. Two samples from Mill Rocks in 2017 had over 300 amphipods, however this year less than 100 have been counted in total. All these differences in zooplankton prey availability may influence whale behavior and movement patterns. Further data analysis aims to uncover this possibility.

Figure 5. 2017 zooplankton community analysis from Tichenor Cove. There was a higher percentage and abundance of Neomysis rayii (yellow) and Alienacanthomysis macropsis (orange) than in Mill Rocks.
Figure 6. 2017 zooplankton community analysis from Mill Rocks. There was a higher abundance and percentage of amphipods (blue) and Holmesimysis sculpta (brown) than in Tichenor cove. Caprellidae (red) increased during the middle of the season, and decreased substantially towards the end.

The past 6 weeks working as part of the 2018 gray whale foraging ecology research team in Port Orford have been nothing short of amazing. We have seen over 50 whales, identified hundreds of zooplankton, and have spent almost every morning on the water in the kayak. An experience like this is a once in a lifetime opportunity that we were fortunate to be a part of. For the past few years, I have been creating videos to document important and exciting times in my life. I have put together a short video that highlights the amazing things we did every day in Port Orford, as well as the creatures that live just below the surface. I hope you enjoy our Gray Whale Foraging Ecology 2018 video with music by Myd – The Sun. 

[B]reaching New Discoveries about Gray Whales in Oregon

By Haley Kent, Marine Studies Initiative (MSI) & summer GEMM Lab intern, OSU senior

“BLOW!”, yells a team “Whale Storm” member, as mist remains above the water from an exhaling gray whale (Eschrichtius robustus). While based at the Port Orford Field Station for 6 weeks of my final summer as an undergrad at Oregon State University my heart has only grown fonder for marine wildlife. I am still in awe of this amazing opportunity of researching the foraging ecology of gray whales as a Marine Studies Initiative and GEMM Lab intern. From this field work I have already learned so much about gray whales and their zooplankton prey, and now it’s time to analyze the data we have collected and see what ecological stories we can uncover.

Figure 1. Robyn and Haley enjoy their time in the research kayak. Photo by Lisa Hildebrand.

WORK IN THE FIELD

This internship is my first field work experience and I have learned many skills and demands needed to study marine wildlife: waking up before the sun (every day begins with screaming alarms), being engulfed by nature (Port Orford is a jaw-dropping location with rich biodiversity), packing up damp gear and equipment to only get my feet wet in the morning ocean waves again, and of course waiting on the weather to cooperate (fog, wind, swell). I wouldn’t want it any other way.

Figure 2. Smokey sunrise from the research kayak. Photo by Haley Kent.

Whether it is standing above the ocean on the ‘Cliff Site’ or sitting in our two-man kayak, every day of this internship has been full of new learning experiences. Using various field work techniques, such as using a theodolite (surveying equipment to track whale location and behavior), Secchi disks (to measure water clarity), GoPro data collection, taking photos of wildlife, and many more tools, have given me a new bank of valuable skills that will stick with me into my future career.

Figure 3. Haley drops Secchi disk from the research kayak. Photo by Dylan Gregory.

Data Analysis

To maximize my amazing internship experience, I am conducting a small data analysis project using the data we have collected these past weeks and in previous summers.  There are so many questions that can be asked of these data, but I am particularly interested in how many times individual gray whales return to our study area to forage seasonally or annually, and if these individual whales forage preferentially where certain zooplankton prey are available.

Photo Identification

After many hours of data collection in the field either in the kayak or on the cliff, we get to take a breather in the lab to work on various projects we are each assigned. Some job tasks include processing data, identifying zooplankton, and looking through the photos taken that day to potentially identify a known whale. Once photos are processed and saved onto the rugged laptop, they are ready for some serious one on one. Looking through each of the 300 photos captured each day can be very tedious, but it is worthwhile when a match is found. Within the photos of each individual whale I first determine whether it is the left or right side of the whale – if we are lucky we get both! – and maybe even a fluke (tail) photo!

Figure 4. Buttons’ left side. Photo taken by Gray Whale Team of 2018.
Figure 5. Buttons’ left side. Photo taken by Gray Whale Team of 2017.

The angles of these photos (Fig. 4 & 5) are very different, so it could be difficult to tell these are the same whale. But, have a closer look at the pigmentation patterns on this whale. Focus on a single spot or area of spots, and see how patterns line up. Does that match in the same area in the next photo? If yes, you could have yourself a match!

Buttons, one of the identified gray whales (Fig. 4 & 5), was seen in 2016, 17, and 18. I was so excited to identify Buttons for the 3rd year in a row as this result demonstrates this whale’s preference for foraging in Port Orford.

Zooplankton and whale foraging behavior

By using the theodolite we track the whale’s position from the cliff location. I have plugged these coordinates into Google Earth, and compared the coordinates to our zooplankton sample stations from that same day. These methods allow me to assess where the whale spent time, and where it did not, which I can then relate to the zooplankton species and abundance we caught in our sample tows (we use a net from the research kayak to collect samples throughout the water column).

Figure 6. Holmesimysis sculpta. This species can range between 4-12mm. The size of this zooplankton relative to the large gray whales foraging on it shows the whale’s incredible senses for prey preference. Photo source: Scripps Institute of Oceanography.

Results (preliminary)

‘Eyeball’ is one of our resident whales that we have identified regularly throughout this season here in Port Orford. I have compared the amount of time Eyeball has spent near zooplankton stations to the prey community we captured at each station.

There is a positive trend in the amount of time the whale spent in an area with the percent abundance of Holmesimysis sculpta (Fig. 7: blue trend line).

Figure 7. Comparative plot between the amount of time the whale “Eyeball” spent within 50m of each zooplankton sampling station and the relative amount of zooplankton species caught at each station. Note the positive trend between time and Holmesimysis sculpta, and the negative trend relative to Neomysis sp. or Caprellidae.

Conversely, there is an inverse trend with two other zooplankton species:  Neomysis sp. (grey trend line) and Caprellidae (orange trend line). These results suggest that Eyeball has a foraging preference for areas where Holmesimysis sculpta (Fig. 6) is more abundant. Who would have known a whale could be so picky? Once the season comes to an end, I plan to use more of our data to continue to make discoveries about the foraging preferences of gray whales in Oregon.

Where the Wild Things Are

By Dylan Gregory, GEMM Lab summer 2018 intern, OSU undergraduate transfer

In ecology, biodiversity is a term often touted for its key importance in stable ecosystems. Every organism plays its role in the constant struggle of nature, competing and cooperating with each other for survival. The sun provides the initial energy to primary producers, herbivores eat those producers, and predators then eat the consumers. The food chain is a simplistic way to look at how ecosystems work, and of course, it is more like an intricate web of interactions. Fungus and plants work together to trade nutrients and create a vast network of fertile soils; kelp forests provide habitats and food for a variety of prey that marine predators feed on. There are checks and balances between all these organisms that give breath into the beauty and color we see in ecosystems around the world. And, here in Port Orford is no exception. Coming to the project I expected to see some whales, of course. However only three weeks in and I’ve been absolutely astounded with the amount of marine biodiversity we’ve experienced. These past three weeks have been nothing if, well, wild.

Eschrichtius robustus, The Gray Whale

There was no doubt we would see gray whales, that is what we are here for after all, and studying them in the field has been an incredibly enlightening experience. Watching an animal every day for weeks really gets you into their head. You start to connect with them and think about their behaviors in different ways. You begin to realize that the individuals have unique quirks, habits and tendencies. For example, one whale would feed quickly for a time, and then seem to run out of energy and “log” itself, floating on the surface, taking multiple breaths in succession to recover before diving back down. Many whales come from the south, to feed in Mill Rocks before moving to Tichenor Cove, and then leave our study region through “Hell’s Gate” to the North, often resting a moment, taking multiple breaths and then launching into the open sea. Still, when you think you know these whales, they surprise you with an alarming unpredictability, making tracking them a new experience every day.

Figure 1 A gray whale surprised us by surfacing right next to our kayak during a routine zooplankton sampling. The site has shown to have a significant amount of zooplankton and it must have been very interested in the prey available, completely ignoring our presence. Photo by Haley Kent.

The whale in Fig. 1 surprised us, and honestly, being so close to it was as humbling as it was awesome. I expected to see whales, but never expected such a close encounter. These gentle giants are one of our not so distant relatives in the ocean. Many of us do this kind of research for more than just the science and the data. Many of us do it for the connection we feel to our mammal family.

Phoca vitulina richardii, The Pacific Harbor Seal

I absolutely adore these harbor seals! They’re well known for their friendliness towards humans as their dopey little heads pop up out of the water to greet you with a curious look in their eyes. They like to bob in the surf and stare at us while we’re out sampling in the kayak. At first, we got quite excited seeing one, often startling them as we’d squeal “seal!” to each other and they’d dip back under and scurry away. Now though, they seem more comfortable being around our kayak (Fig. 2).

Figure 2 This harbor seal surfaced next to Haley and me shortly before the whale in Fig 1. We named him Courage, as he stuck around and kept us company during the whole encounter. Photo by Haley Kent.

One day a seal followed Lisa and Hayleigh around the jetty on their way back from sampling, swimming around the kayak and investigating them. Out in Mill Rocks, we often see them stretching on top of the rocks, seemingly doing a little yoga session while basking in the morning sun. Despite their cute and cuddly appearance, they are still predators. With plenty of fish to eat and make them happy, these harbor seals are quite plentiful themselves, and I’d like to think we’ve become quite good friends with the little guys.

Tursiops truncatus, The Bottlenose Dolphin

Figure 3 A shot of the dorsal fin seen on August 9th in Mill Rocks. Photo by Dylan Gregory.

One morning we were in Mill Rocks and a large cloud of fog moved in, so we decided to wait it out before making our passage to Tichenor Cove. While sitting there, enjoying a snack, we noticed some dorsal fins popping up about 100 meters from us. Caught by surprise, Haley and I scrambled for our cameras and lo and behold, we noticed they were a small pod of dolphins! Two adults and a calf. Unfortunately, as you can see from our pictures, it is difficult to identify what species they were exactly.

Figure 4 The head and rostrum of the dolphin seen in Mill Rocks on August 9th. Photo by Dylan Gregory.

After communicating with Lisa and Leigh, we have decided that their dorsal fins were far too big and curved to be harbor porpoises (Fig. 3), and the intersection of the head and rostrum seem to have the classic look of a bottlenose dolphin (Fig. 4).

If these were in fact bottlenose dolphins, why are they here in Port Orford, Oregon? It’s uncommon for them to be so far north in our colder waters. Were they foraging for food? Finding refuge from predators? Is it because our waters are becoming warmer? A sighting like this gives more weight to how climate change is affecting our oceans and how marine animals are responding by adapting their migratory and feeding behaviors.

Pisaster and Pycnopodia, The Common Sea Star and the Sunflower Star

Figure 5 Pisaster sea stars and anemones on a rock in Mill Rocks. No Pycnopodia (often called sunflower stars for their many legs) have been spotted in our study zone. Photo by Haley Kent.

One of the coolest aspects of living at the Port Orford Field Station is the fact that we have access to a lot of engagement with other scientists. For instance, we were able to attend a webinar about Sea Star Wasting Disease (SSWD) research currently happening at OSU by Post Doc Sarah Gravem. In a nutshell, a bacterial disease has been infecting sea stars along the west coast, causing a rapid plummet in their populations. Pisaster and Pycnopodia (Fig. 5) have been particularly affected. They are keystone predators, and as such, hold an important role in intertidal ecosystems. Feeding on snails, urchins, other sea stars and various mollusks, these sea stars maintain species populations and allow for a diverse and stable intertidal zone, which then supports many other near shore marine species. While SSWD’s cause is relatively unknown, Pisaster seems to be recovering while Pycnopodia is still struggling. I’ve even heard some anecdotal reports that fishermen here in Port Orford have noticed the lack of Pycnopodia as well, but they are rather pleased that these “ragmops” have stopped mucking up their lines and crab pots.

Below the Surface

There is a charm to the deep, a mystery and wonder that has captured the imagination of humans ad nauseam. Stories, movies, music and masterpieces of art have been inspired by The Abyss. Below the surface lies a diverse world teeming with life, full of questions and answers to be found. While marine mammals are why we’re here, there’s an entirely different environment under the water that is unseen from the safety of our dry, oxygen rich air. Our research doesn’t involve any diving, and so our eyes under the water are a GoPro camera attached to a downrigger on our kayak. Although designed to measure zooplankton community density, we’ve seen quite a bit more than itty bitty sea bugs in the depths of our little harbor here in Port Orford.

Strongylocentrotus purpuratus, The Purple Sea Urchin

Urchins are known for their bright colors and spiny ball like exterior. Close relatives to the sea stars, urchins inhabit the intertidal zones and also take residence within kelp beds. During our kayak training, we passed by some rocks near the cliffs and it was an awesome sight seeing the diversity of intertidal critters such as anemones, sea stars and sea urchins. However, a week into data collection, we have noticed something startling: a large quantity of the urchins cover the seafloor and the kelp, or at least what was left of the kelp (Fig. 6).

Figure 6 Sea Urchins decimating a kelp bed in Tichenor Cove. Photo captured from GoPro footage.

Sea urchins are important members in their communities. They graze on algae and control it from overwhelming the waters, but when left unchecked urchins can completely decimate kelp beds. This pattern is often referred to as “urchin barrens”. Sea otters and sea stars are the urchin’s main predator, and due to the absence of otters and the emergence of SSWD, the occurrence of urchin barrens has risen. An assessment of the reintroduction of the sea otters to Oregon by Dominique Kone, a GEMM Lab graduate student, is underway, and there is a lot of new research on SSWD, both of which could support the ‘ecosystem control’ of urchin populations. We’ve already spotted the urchins wreaking their havoc on the kelp in two separate sites in Tichenor Cove. Since gray whales primarily feed within these kelp beds, this increase in urchin populations is something that we are monitoring. An urchin barren can happen quickly and causes significant ecosystem damage, so this is not something to ignore. If we lose the kelp, it’s easy to imagine that we may lose the whales.

Alopias vulpinus, The Thresher Shark

Figure 7 A thresher shark spotted in Tichenor Cove in Port Orford, OR. Photo captured by GoPro footage.

By far, the most exciting thing I’ve seen so far has been this lovely creature (Fig. 7). The thresher shark usually inhabits the oceanic and coastal zones in tropical and temperate waters. They feed on pelagic schooling fish, squid and sometimes even shorebirds. They attack by whipping their tails (which grow to be the size of their body!) at their prey to stun them. Threshers are on the IUCN Red List of Threatened Species as “Vulnerable” due to their declining populations. They are often hunted for shark fin soup, or by trophy hunters due to their elegant and unique tails.

Haley, our resident shark enthusiast, was able to tell that this shark was a female by the lack of claspers (male appendages) on her pelvic fin. Why was she here though? During the summer, threshers will migrate to colder yet productive northern waters to feed, and on some rare occasions, such as this one, they will come closer to shore. Perhaps she was chasing prey into the harbor and found it to be full of yummy food, or she is a juvenile, which often stay near the continental shelf.

Either way, we were all surprised and excited to see such an exotic and beautiful species of shark caught on camera in our study zone. She even does a little strut in front of the GoPro camera, showing off her beautiful caudal fin!

Protecting our Wilds      

These are only a few examples of the many different animals at work in Port Orford’s ecosystem. Perhaps the biodiversity here is why this is such a hot spot for our whale friends. The productive and lively waters have shown us so many critters, and likely many more we have yet to see. But alas, we have three more weeks of data collection and new discoveries, and I couldn’t be more excited.

“It is a curious situation that the sea, from which life first arose should now be threatened by the activities of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is rather to life itself.”

– Rachel Carson, The Sea Around Us

This experience only drives me further into my pursuit of ecological research. I believe it’s incredibly important to understand the world and how it functions, and to do so before it’s too late. All too often we have breakthrough discoveries in science because something has already fallen apart. Ecosystems are fragile, and climate change, pollution, and other anthropogenic disturbances all have an impact which damage and alter ecosystems and the services they provide. However, it’s an impact we can control with a fundamental understanding of how nature works. With a little hope, some integrity, and a whole lot of passion, I believe we have the power to truly make a difference.

Cold Fingers and Carabiners

By Hayleigh Middleton, GEMM Lab summer 2018 intern, entering OSU undergrad 

Cold Fingers and Carabiners: that’s what most of the past three weeks have been about. We’ve progressively been getting up earlier—with many thanks to the coffee pot and multiple alarms— in order to be on the water collecting data before the wind and fog decide to kick in. Working on the ocean at 7 am with wet hands, metal equipment, a tight suit, and a “refreshing” breeze while trying to keep an eight-foot sit-on-top kayak from tipping over is challenging to say the least. Making sure the Theodolite is perfectly level on its tripod resting on sand-covered ground at the top of a cliff? Not much easier. The air is cold, the wind is cold, the equipment is cold, I’m cold, and now, everything is wet.

Rugged laptop on the cliff site. Photo by Hayleigh Middleton.

I absolutely love it.

Of all the ways I could have chosen to spend my summer before starting college at OSU, I’m so glad I took a chance and asked to spend it here. The official goals of our research project are to monitor and record the foraging habits of the Pacific Coast Feeding Group of gray whales, attempt to find out if specific individuals tend to have site fidelity and forage here year after year, and why or how they choose certain spots to feed over others. What does that mean for me? I get to kayak and take pictures of whales for six weeks! Of course, there’s a bunch of technical stuff and expensive equipment that took us two weeks to learn, but now we’re off to a great start and ready to learn more about these amazing creatures.

We have such a short amount of time to collect all this data to try and fill in the puzzle that is gray whale behavior, and we’re only a few weeks in, but I feel like I’ve already connected with this group of 60,000-pound mammals. That, in essence, is really what we’re doing here. We’re on top of a 33-meter-high cliff watching empty water for hours on the chance that we’ll be able to see a whale, identify it through photo-ID, track it with the theodolite to figure out its behavior, and use our kayak data to figure out its diet and feeding choices. Even though the whales forage up to two kilometers away from our tracking spot, it feels like they know we’re watching them. Sometimes it feels like they’re teasing us—we’ll see one, and once we get the sights fixed on it, it dives down and doesn’t come back up until we’ve turned our attention. One whale got into a very predictable pattern: three blows and then a deep dive, forage for five minutes, pop up half a viewfinder away, three more blows. We set our sights on the third blow and waited for her to resurface.

…and waited.

…and waited.

She swam away and didn’t show herself again.

Other times it’s like they conspire against us. Earlier this week, we spent most of the morning tracking the same whale. A couple hours into the track, another whale popped up right next to the first. Since we use a computerized tracking program, each whale is assigned a group number. That way, we can track each individual’s path and later match it to the photo identification database and sometimes a nickname. The two whales surfaced at just the right frequency and distance apart that deciding which number was currently up was guesswork for a good 15 minutes, but we gave them new track numbers and were able to sort it out later after reviewing our photos.

Searching for whales. Photo by Haley Kent.

On another day, we surveyed for whales until quitting time, which is 3:00 pm. About 2:30 pm, one was finally spotted. I named her Princess because she couldn’t be bothered to bring her body out of the water enough so we could mark her location or take a picture except for when her pectoral fin, the tip of which was “gloved” in white, came out and made a motion like a princess in a parade. When there are whales around, we can’t just say “oh look, 3:00 pm time to go” because this is important data to collect. So, we decided to wait until 3:30 pm to see if she surfaced again within visual range. 3:30 pm came and still no sign of her, so I packed up the theodolite and tripod. As soon as the box was closed, she blew, and another whale surfaced right in front of the cliff. We got some pictures of the closer one for a bit and decided that was enough. As the camera was being lowered into its case, another whale surfaced in the cove. It felt like the first went and told all the whales heading south “hey, these guys want to leave at 3, so show up right around then.” That day we got back to the lab around 5. Even though this meant being on the cliff for almost 10 hours that day, it was thrilling to have seen so many whales in one day.

Then there are times when the whales seem to beg for attention. On our third day on the cliff, we saw what we believe to be a juvenile come swimming into view. We assume that he was a juvenile because he was “small” and quite blank in terms of pigmentation and scarring. He was adorable. He stayed over at Mill Rocks for a while foraging, all of which we “fixed” into the tracking program via the Theodolite, and then he came toward us into the little kelp patch just in front of our cliff site. He would dive down, scoop up some zooplankton to eat, and resurface right in the middle of the kelp. The cutest part is that he would then proceed to roll around in the kelp and further drape himself in it.

Kelp whale. Photo by Lisa Hildebrand.

Having such a young whale come and forage made us wonder if mothers who have site fidelity then teach their young “hey, you don’t have to go all the way north, there’s a ton of good food here in Port Orford.”  Hopefully that’s one of the things we’ll be able to figure out with the data collected with this longterm study. But in the meantime, I still have three weeks of data to collect and a bunch more whales to meet. 

New steps towards community engagement: introducing high schoolers to the field

By Florence Sullivan, MSc, GEMM Lab Research Assistant

This summer, I had the pleasure of returning to Port Orford to lead another field season of the GEMM Lab’s gray whale foraging ecology research project.  While our goal this summer was to continue gathering data on gray whale habitat use and zooplankton community structure in the Port Orford region, we added in a new and exciting community engagement component: We integrated local high school students into our research efforts in order to engage with the local community to promote interest in the OSU field station and the research taking place in their community. Frequent blog readers will have seen the posts written by this year’s interns (Maggie O’Rourke Liggett, Nathan Malamud, and Quince Nye) as they described how they became interns, their experience doing fieldwork, and some lessons they’ve learned from the project. I am very impressed with the hard work and effort that all three of them put into making this field season a success.  (Getting out of a warm bed, and showing up at the field station at 6am sharp for five weeks straight is no easy feat for high-schoolers or an undergrad student during summer break!)

Quince hard at work scanning the horizon for whale spouts. photo credit: Alexa Kownacki

During the month of August, our team collected the following data on whale distribution and behavior:

  •  Spent 108 hours on the cliff looking for whales
  • Spent 11 hours actively tracking whales with the theodolite
  • Collected 19 whale tracklines
  • Identified 15 individual whales using photo-ID – Two of those whales came back 3 times each, and one of them was a whale nick-named “Buttons” who we had tracked in 2016 as well.

We also collected data on zooplankton – gray whale prey – in the area:

  • Collected 134 GoPro videos of the water column at the 12 kayak sample sites
  • Did approximately 147 zooplankton net tows
  • Collected 64 samples for community analysis to see what species of zooplankton were present
  • Collected 115 samples for energetic analysis to determine how many calories can be derived from each zooplankton
The 2017 field team. From left to right: Tom Calvanese (Field Station Manager), Florence Sullivan (Project Lead), Quince Nye, Maggie O’Rourke-Liggett, and Nathan Malamud. Photo credit: Alexa Kownacki

Since I began this project in 2015, I have been privileged to work with some truly fantastic interns.  Each year, I learned new lessons about how to be an effective mentor, and how to communicate our research goals and project needs more clearly. This year was no exception, and I worked hard to bring some of the things I’ve learned into my project planning.  As the team can tell you, science communication, and the benefits of building good will and strong community relationships were heavily emphasized over the course of the internship.  Everyone was encouraged to use every opportunity to engage with the public, explain our work, and pass on new things they had learned.  Whenever the team encountered other kayakers out on the water, we took the time to share any cool zooplankton samples we gathered that day, and explain the goals of our research.  Maggie and I also took the opportunity to give a pair of evening lectures at Humbug Mountain State Park, which were both well attended by curious campers.

Florence and Maggie give evening lectures at Humbug Mountain State Park

In addition, the team held a successful final community presentation on September 1 at the Port Orford Field Station that 45 people attended!  In the week leading up to the presentation, Quince and Nathan spent many long hours working diligently on the powerpoint presentation, while Maggie put together a video presentation of “the intern experience” (Click here for the video showcased on last week’s blog).  I am incredibly proud of Nathan and Quince, and the clear and confident manner in which they presented their experience to the audience who showed up to support them.  They easily fielded the following questions:

Q: “How do you tell the difference between a whale that is searching or foraging?”

A: When we look at the boundaries of our study site, a foraging whale consistently comes up to breathe in the same spot, while a searching whale covers a lot of distance going back and forth without leaving the general area.

Q: “How do we make sure that this program continues?”

A: Stay curious and support your students as they take on internships, support the field station as it seeks to provide resources, and if possible, donate to funds that raise money for research efforts.

Nathan talks about the plankton results during the final community presentation. photo credit: Alexa Kownacki
The audience during the final community presntation. photo credit: Alexa Kownacki
Quince and Nathan answer questions at the end of the community presentation. photo credit: Alexa Kownacki

When communicating science, it is important to results into context.  In addition to showcasing the possibilities of excellent research with positive community support, and just how much a trio of young people can grow over the course of 6 weeks, this summer has highlighted the value of long term monitoring studies, particularly when studying long-lived animals such as whales. We saw far fewer whales this summer than compared to the two previous years, and the whales spent much less time in the Port Orford area (Table 1). As a scientist, knowing where whales are not (absence data) is just as important as knowing where whales are (presence data), and these marked differences drive our hypotheses! What has changed in the system? What can explain the differences in whale behavior between years?  Does it have to do with food quality or availability?  (This is why we have been gathering all those zooplankton samples.) Does it have to do with other oceanographic factors or human activities?

Table 1. Summary of whale tracking efforts for the three seasons of field work in Port Orford.   Notice how in 2017 we only collected 194 whale location points (theodolite marks). This is about 92% less than in the previous years.

2015 2016 2017
Hours spent watching 72:49 148:30 108
Hours spent tracking 80:39* 82:30 11
Number of individuals 43 50 15
Number of theodolite marks 2483 2414 194

*we often tracked more than one individual simultaneously in 2015

Long term monitoring projects give us a chance to notice differences between years, and ask questions about what are normal fluctuations in the system, and what are abnormal. On top of that, projects like this create the opportunity for additional internships, and to mentor more students in the scientific method of investigation.  There is so much still to be explored in the Port Orford ecosystem, and I truly hope this program is able to continue.  If you are interested in making a monetary contribution to sustain this research and internship program, donations can be accepted here (gemm lab fund) and here (field station fund).

Quince records zooplankon sample weights in the wet lab.
Quince sorts through a zooplankton sample in the wet lab.
Nathan stores zooplankton community analysis samples
Maggie and Nathan out in the kayak
Quince and Maggie in the kayak
Maggie, Florence and Quince enjoy the eclipse!
Quince and Maggie bundle up on the cliff as they watch for whales.
Nathan and Quince organize data on the computer at the end of the day.
Quince and Nathan build sand castles as we wait for the fog to clear before launching the research kayak

This research and  student internships would not have been possible without the generous support from Oregon Sea Grant, the Oregon Coast STEM hub, the Port Orford Field Station, South Coast Tours, partnerships with the Bernard and Chapman labs, the OSU Marine Mammal Institute, and the Geospatial Ecology of Marine Megafauna Lab.

Through the intern’s eyes; a video log of the 2017 gray whale foraging ecology project.

By: Maggie O’Rourke-Liggett, GEMM lab summer intern, Oregon State University

Enjoy this short video showcasing the intern experience from the gray whale foraging ecology project this summer. Check back next week for a recap of our preliminary results.

The passion of a researcher

By Quince Nye, GEMM Lab Summer Intern, Pacific High School Junior

I have spent a lot of my life surrounded by nature. I like to backpack, bike, dive, and kayak in these natural environments. I also have the luck of having parents who are always planning to take me on another adventure where I get to see nature and its inhabitants in ways most people don’t get to enjoy.

Through my backyard explorations, I have begun to realize that Port Orford has an amazing ecosystem in the coves and rivers that are very tied into our community. I’ve fished and swam in these rivers, gone on kayaking tours in these coves (with a great kayak company called South Coast Tours that we partner with), and I’ve seen the life that dwells in them.

Nathan and Maggie paddle out to Mill Rocks for early morning sample collection

Growing up in a school of less than 100 kids I have learned to never reject an opportunity to be a part of something bigger and learn from that experience. So when one of my close friends told me about an OSU project (a college I’m interested in attending) that needed interns to help collect data on gray whales, and kayak almost every day, I signed up without a doubt in my mind.

The team gets some good practice tracking Buttons (Whale #3).  Left to right; Quince, Nathan, Maggie, Florence.

Fast forward a month, and I wake up at 5:20 am. I eat breakfast and get to the Port Orford Field Station. We make a plan for the operations of both the kayak team and cliff team. Today, I’m part of the cliff team, so I head up above the station to Fort Point. Florence and I set up the theodolite and computer at the lookout point and start taking half hour watch shifts searching the horizon for the spout of a gray whale.  Sometimes you see one right away, but other times it feels like the whales are actively hiding from you. These are the times I wish Maggie was here with her endless supply of Disney soundtracks to help pass the hours.

Imitating a ship’s captain, Quince points toward our whale while shouting “Mark”.

A whale spouts out at Mill Rocks and starts heading across to the jetty. Hurray, its data collection time! I try to quickly move the cross-hairs of the theodolite onto the position of the whale using a set of knobs like those on an etch-a-sketch. As you may understand, it’s not an easy task at first but I manage to do it because I’ve been practicing for three weeks. I say “Mark!” cueing Florence to click a button in the program Pythagoras on the computer to record the whale’s position.

The left hand side of Buttons – notice the scatter of white markings on the upper back.

Meanwhile, Florence sees that the whale has two white spots where the fluke meets the knuckles. Those are identifying marks of the beloved whale, Buttons. This whale has been seen here since 2016 and is a fan favorite for our on-going research program. Florence gets just as excited every time and texts her eagerly awaiting interns of previous years all about the sighting. Of course Buttons is not the only whale to have identifying marks such as scars and pigmentation marks. This is why we make sure to get photos of the whales we spot, allowing us to do photo-ID analysis on them through comparison to our database of pictures from previous years.

Quince practices CPR protocol on a training mannequin on his first day.

So far I have gained skill after skill in this internship. I got CPR certified, took a kayak training class, learned how to use a theodolite, and have spent many educational (and frustrating) hours entering data in Excel. I joined the program because I was interested in all of these things. It surprised me that I was developing a relationship with the whales I’m researching. By the end of August I’m now sure that I will also know many of the whales by name. I will probably be much better at using an etch-a-sketch, and I will have had my first taste at what being a scientist is like. What I strive for, however, is to have the same look in my eyes that appears in Florence’s whenever a familiar whale decides to browse our kelp beds.

Curiosity and Community, new ways of exploring our environment.

By Nathan Malamud, GEMM Lab summer intern, Pacific High School senior

I am someone who has lived in a small town for all his life. Pretty much everyone knows each other by their first name and my graduating class only has around 20 people. Everywhere you look you will find a farm, ranch, or cranberry bog (even our school has two bogs of their own!). Because of my small town life, I have a strong sense of community. However, I have also developed a curiosity about natural and global phenomena. I try to connect these two virtues by participating in scientific efforts that help my community. When I heard that the OSU Port Orford Field Station was offering internships, I knew right away that it would definitely be a great experience for me.

The view from our field site at Fort Point in Port Orford

Port Orford, on Oregon’s southern coast, is a town that is closely tied to the ocean. So naturally, it’s important to understand and monitor our surroundings so that our town can thrive. Last year, my Marine Science class helped me further understand the complexity of the ocean. Our first semester taught us all about marine biology, zoology, and ecology. Our second semester immersed us into oceanography, ocean geology, and ocean chemistry. During the second semester, we also took trips to our town’s marine science center and to the marine reserve near Rocky Point. I loved this course and decided to try to expand my knowledge about the subject by going to the OSU Field Station.

Our safety instructor teaches takes us through basic paddling techniques

As an intern, I am currently working with three teammates to understand the feeding behavior of gray whales – what places they like to eat zooplankton the most and why they like to eat there. This whale project helps our community by Port Orford enabling high school students to perform college-level scientific research and inquiry, as well as allowing us to learn valuable skills such as CPR, surveying using a theodolite, working with chemicals in a lab, and data processing.

We had to learn how to rescue ourselves just in case we have an accident in the boat.
We all made it back in the boat!

This internship with OSU’s GEMM Lab has taught me many new skills and given me new experiences that I have never had before. Before this internship, I had never been in a kayak. Now, I go out on the water nearly every other day! When on the water, I always try to sharpen my navigating skills. I use a GPS to pinpoint the locations of our sampling stations, and I communicate to my partner where we need to go and how we will get there.

Its very important to stretch before kayaking every morning.

Once we are there, it is my job to keep the boat close to the station location so that my partner can get accurate samples. This part is a very tricky task, because not only do I have to pay attention to the GPS to make sure we are within 10 meters of the spot, but I also have to pay attention to my surroundings. I have to look at the ocean, and figure out what direction the waves are coming from. I have to watch how external forces, like wind and currents, can cause the boat to drift far from station, and I have to correct drifting with gentle paddle strokes. This is hard, especially since the kayak is so light and easy to get pushed around by the wind. However, despite the difficulty, I have learned that it is crucial not to panic. Frustration only makes things worse. The key is to maintain a harmonic balance of concentration and zen.

I have also learned that when collecting data in the field, it’s important to observe and document as much as possible. When we are in the kayak, we have 12 stations that we try to visit every day (as long as the weather cooperates). At each station, we first use a secchi disk to test the water clarity, then lower the GoPro to film the water column and see where the zooplankton are. Sometimes we catch other interesting things on the video too, such as siphonophores (my personal favorites are jellies and salps) and rockfish.

A siphonophore
A rockfish captured with our GoPro.

Next we tow a zooplankton net through the water, and let it collect zooplankton of all shapes and sizes, from tiny mysids to skeleton shrimp. Then we proceed to the next station and repeat the process. We have to remember to label everything, and tell the GoPro camera what station we’re at so we can sort all the information correctly when we get back to the field station. At the end of the day, we log our data into a computer, and preserve half our plankton samples with ethanol, so that we can identify the species present.  The other half gets frozen for caloric content analysis by our collaborator Dr. Kim Bernard to help us understand how much zooplankton a whale needs to eat to meet its energy needs each day.

By repeating this entire process every day, we are able to look at daily changes, which also helps us to better understand why whales spend time in certain areas and not others. Be sure to check out my teammate Maggie’s blog post about some of the tools and technologies we use to track the whales!

This whale project has been, and definitely still is, a great experience for me! I have learned a lot and have worked with some amazing people. I believe that I am learning many valuable skills, and that the skills I learn will allow me to help my community.