A porpoise-full lesson on cetacean identification

By Amanda Holdman, M.S. student

The rain is beginning to lighten, the heavy winds are starting  to dissipate, and the sun is beginning to shine. Seabirds are starting to fill the air and marine mammals are starting to fill the coastline, making this week a perfect time to learn about some of the small, cryptic cetaceans that consider the Oregon coast home year round.

While I was walking my dog on South Beach in Newport last week, I heard the mother of a small family point and shout that she had just seen an animal that she referred to as a “porpoise/dolphin/small whale.” Upon a second sighting of it, she ruled against the small whale and decided on a dolphin. In reality, she had just sighted a harbor porpoise.

Throughout the duration of my work with Oregon State studying the patterns of harbor porpoise occurrence, one of the most frequently asked questions I get is “What is the difference between a porpoise and a dolphin?”

Differentiating between a dolphin and porpoise is probably the most common identification mistake when it comes to cetaceans. Understandably, there is significant confusion between the two species. The words dolphin and porpoise were, colloquially, used as synonyms until the 1970’s. Unlike lions and tigers that are not only in the same family, but also the same genus, dolphins and porpoises are in different families, having diverged evolutionarily about 15 million years ago! Therefore, dolphins and porpoises are more distinct than lions and tigers. These differences span from head and fin shape, to behavior, group size and vocals.

Physical Differences

Most people are quite certain they are seeing a dolphin mainly because dolphins are more prevalent than porpoises; over 30 species of dolphins are known to exist, but only 6 porpoise species have been identified worldwide. Unless, you’ve seen dolphins and porpoises side by side, nose to fin, it is quite difficult to tell the difference at first glance. In the natural history of cetacean’s course at Oregon State, we are taught that the three main visual differences are in the shape of the teeth, snout, and dorsal fin. But in reality, the first two characteristics aren’t likely to help you spot them from shore. In addition to fin size, the behavior and group size is more likely to cue you in on what animal you are seeing. The picture below does a pretty good job summarizing their physical characteristics. Porpoise have a small triangle fin, while dolphins have more of a curved, pointy fin.

identificationDrawing by Mike Rock, 2009.

Size Differences

The lengths and widths of dolphins vary anywhere from 4 feet to 30 feet. Killer whales, the largest dolphin species and known predator to the harbor porpoise, can weigh up to ten tons, while the harbor porpoise is about five feet and rarely weighs in over 150 pounds.  Porpoises are one of the smallest cetaceans, and because of their small size, they lose body heat to the water more quickly than other cetaceans. Their blunt snout is likely an adaptation to minimize surface area to conserve heat. The small sizes of porpoise require them to eat frequently, rather than depending on fat reserves, making them more of an opportunistic feeder. The need to constantly forage also keeps harbor porpoise from migrating on a large scale. Harbor porpoise are known to move from onshore to offshore waters with changing water temperatures and prey distributions, but not known to make long migration trips.

Social Differences

Porpoises are also less social and talkative than dolphins. Dolphins are typically found in large groups, can be highly acrobatic, and often seen bow-riding. Porpoise, specifically harbor porpoise, are often found singularly or in groups of two to three, and shy away from vessels, making them difficult to observe at sea. While both species have large melon heads for echolocation purposes, dolphins make whistles through there blow holes to communicate with each other underwater. Evolutionary scientists believe porpoises do not whistle due to structural differences in their blowhole. (This is why acoustics is such a great way to learn about the occurrence patterns of harbor porpoise – their echolocation is very distinct!) Porpoise echolocation signals have evolved into a very narrow frequency range – theoretically to protect themselves from killer whale predation by echolocating at a frequency killer whales cannot hear.  Dolphins have evolved other strategies to avoid predators such as large group size and fast speed.

While differentiating between porpoises and dolphins takes a bit of practice, it is important to differentiate between the two species because we manage them differently due to some of their morphological differences. Their different adaptations between the species make them more sensitive to certain stressors. For example, for harbor porpoise, the sound produced from boat noise or renewable energy devices is more likely to impact them than other cetaceans. The sensitivity of the nerve cells in the ears of animals (including humans) generally corresponds to the frequencies that each animal produces. So animals like the harbor porpoise have more nerves in their ears that are tuned to very high frequencies (since they make high frequency sounds). If the nerve cells in the harbor porpoise ears become damaged, their ability to communicate, navigate and find food is seriously affected. In addition to their small home ranges and moderately high position in the food web, the sensitivity of harbor porpoise to ocean noise levels make harbor porpoise an important indicator species for ecosystem health, and an important species to study on the Oregon Coast.

Smile! You’re on Camera!

By Florence Sullivan, MSc. Student, GEMM Lab

Happy Spring everyone!  You may be wondering where the gray whale updates have been all winter – and while I haven’t migrated south to Baja California with them, I have spent many hours in the GEMM Lab processing data, and categorizing photos.

You may recall that one of my base questions for this project is:

Do individual whales have different foraging strategies?

In order to answer this question, we must be able to tell individual gray whales apart. Scientists have many methods for recognizing individuals of different species using tags and bands, taking biopsy samples for DNA analysis, and more. But the method we’re using for this project is perhaps the simplest: Photo-Identification, which relies on the unique markings on individual animals, like fingerprints.  All you need is a camera and rather a lot of patience.

Bottlenose dolphins were some of the first cetaceans to be documented by photo-identification.  Individuals are identified by knicks and notches in their fins. Humpback whales are comparatively easy to identify – the bold black and white patterns on the underside of their frequently displayed flukes are compared.  Orcas, one of the most beloved species of cetaceans, are recognized thanks to their saddle patches – again, unique to each individual. Did you know that the coloration and shape of those patches is actually indicative of the different ecotypes of Orca around the world? Check out this beautiful poster by Uko Gorter to see!

Gray whale photo identification is a bit more subtle since these whales don’t have dorsal fins and do not show the undersides of their fluke regularly.  Because gray whales can have very different patterns on either side of their body, it is also important to get photos of both their right and left sides, as well as the fluke, to be sure of recognizing an individual if it comes around again.   When taking photos of a gray whale, it’s a good idea to include the dorsal hump, where the knuckles start as it dives, as an easy indicator of which side of the body you are looking at when you’re trying to match photos.  Some clues that I often use when identifying an individual include the placement of barnacles, and patterns of pigmentation and scars.  You can see that patience and a talent for pattern recognition come in handy for this sort of work.

While we were in the field, it was important for my team to quickly find reference features to make sure we were always tracking the same whale. If you stopped by to visit our field station, you may have heard use saying things like “68 has white on both fluke-tips”, “70 has a propeller scar on the left side”,  “the barnacles on 54’s head looks like a polyp”, or “27 has a smiley face in front of the first knuckle left side.” Sometimes, if a trait was particularly obvious, and the whale visited our field station more than once, we would give them a name to help us remember them.  These notes were often (but to my frustration, not always!) recorded in our field notebook, and have come in handy this winter as I have systematically gone through the 8000+ photos we took last summer, identifying each individual, and noting whenever one was a repeat visitor. With these individuals labeled, I can now assess their level of behavioral and distribution consistency within and between study sites, and over the course of the summer.

Why don’t you try your luck?  How many individuals are in this photoset? How many repeats?  If I tell you that my team named some of these whales Mitosis, Smiley, Ninja and Keyboard can you figure out which ones they are?

#1
#2
#2
#3
#4
#4
#5
#5
#6
#6
#7
#7
#8
#8
#9
#9
#10
#10

 

Keep scrolling for the answer key ( I don’t want to spoil it too easily!)

 

 

 

 

 

Answers:

There are 7 whales in this photoset. Smiley and Keyboard both have repeat shots for you to find, and Smiley even shows off both left and right sides.

  1. Whale 18 – Mitosis
  2. Whale 70 -Keyboard
  3. Whale 23 -Smiley
  4. Whale 68 – Keyboard
  5. Whale 27 -Smiley
  6. Whale 67
  7. Whale 36 -Ninja
  8. Whale 60 – “60”
  9. Whale 38 – has no nickname even if we’ve seen it 8 times! Have any suggestions? leave it in the comments!
  10. Whale 55 – Smiley

 

Midway Atoll: Two weeks at the largest albatross colony in the world

By Rachael Orben, Postdoctoral Scholar, Seabird Oceanography Lab & Geospatial Ecology of Marine Megafauna Lab, Oregon State University

In January I was extremely lucky to accompany my former PhD advisor, Scott Shaffer to Midway Atoll National Wildlife Refuge in the Papahānaumokuākea Marine National Monument as part of my job as a postdoc working in Rob Suryan’s Seabird Oceanography LabWe were there with the dual purpose of GPS tracking Laysan and Black-footed albatrosses as part of Scott’s long-term research and to collect fine-scale data on flight behavior to develop collision risk models for wind energy development (in other areas of the species ranges such as Oregon). Here are my impressions of this amazing island.

So many albatrosses! Our approximately four hour flight from Honolulu to Midway landed at night and as we stood around on the dark tarmac greeting the human island residents I could just make out the ghostly glistening outlines of albatrosses by moonlight. But I had to wait until the following morning to really take stock of where I had suddenly landed: Midway Atoll, the largest albatross colony in the world. This was my first trip to the Northwestern Hawaiian Islands, but I have been to other albatross colonies before and Midway is most definitely different.

First of all, it was hot(ish)!

Secondly, I was amazed to see albatrosses nesting everywhere. Unlike the southern hemisphere colonies I have visited, the albatrosses aren’t restricted to their section of the island or even nesting as close to each other as possible. Instead there are nests literally everywhere there might be enough loose substrate! Birds nest in the middle of the roads, in the bike racks (bikes are an easy quick means of transportation), along the paths, next to the extremely loud generator, near piles of old equipment, and around buildings. Hawaiian albatross nests are not much to look at compared to the mud pedestal nests of the southern hemisphere mollymawks (see the photos below) and are often made of just enough sand and vegetation to keep the egg in place. There are no aerial predators of these birds, beyond the occasional vagrant peregrine, and certainly nothing that might rival the tenacity of the skuas in the southern hemisphere. Perhaps it is this naiveté that has lead to their willingness to nest anywhere.

It may also be this naiveté that has facilitated the following unfortunate turn of events. Just before I arrived, the USFWS and a crew of volunteers had just finished up the annual albatross count. During their counting sweeps they noticed injured adults incubating eggs. After setting out trail cams, suspicions were confirmed. The introduced mice on Midway have discovered that albatrosses are a source of food. House mice are known to prey on albatross chicks on Gough and Marion Islands in the South Atlantic (more information here – warning graphic photos), but to my knowledge this is the first time that they have started eating adult birds. You can read the USFWS announcement here. The plane that I flew out on brought in people, traps, and resources to deal with the situation, but stay tuned as I fear this saga is just beginning.

Finally, and on a further less than positive note, I went to Midway fully aware of the problem that plastics pose to these birds and our marine ecosystem, but there is something to be said for seeing it first hand. The chicks were very small when I was there so I didn’t see any direct impacts on them, but see below for photos of carcasses of last year’s fledglings with plastic filled stomachs. Instead, it was the shear amount of random plastic bits strewn around the island and buried layers deep into the sand that struck me. I learned that sometimes the plastic bits are glow-in-the-dark! Sometimes fishing lures have batteries in them – I am not sure what they are used to catch – do you know? And toothbrushes are very common. All of the plastic that I saw among the birds arrived in the stomach of an adult albatross. All-in-all the experience gave me renewed inspiration for continuing to reduce the amount of plastic that I use (click here for more information on albatrosses and plastic, and here and here for info on marine plastic pollution in general). I collected interesting pieces to bring home with me (see the photos below), but it is a non-random sampling of what caught my eye. I left many many plastic shards where they were.

I have written mostly about the birds, but Midway is full of human history. As I biked along the runway, or past the old officer quarters, I often found myself wondering what all these albatrosses have seen over the years and what they might witness in the future. Two weeks was really just a blink-of-an-eye for an albatross that can live over 40 years (or longer like Wisdom the albatross). I was terribly sad to leave such a beautiful place, but I came home with amazing memories, photos, and gigabytes of data that are already giving me a glimpse into the world of albatrosses at sea.