This post is the second in a three-part series that summarizes conclusions and insights from research of active, blended, and adaptive learning practices. Part one covered active learning, and today’s article focuses on the value of blended learning.

First Things First

What, exactly, is “blended” learning? Dictionary.com defines it as a “style of education in which students learn via electronic and online media as well as traditional face-to-face learning.” This is a fairly simplistic view, so Clifford Maxwell (2016), on the Blended Learning Universe website, offers a more detailed definition that clarifies three distinct parts:

  1. Any formal education program in which at least part of the learning is delivered online, wherein the student controls some element of time, place, path or pace.
  2. Some portion of the student’s learning occurs in a supervised physical location away from home, such as in a traditional on-campus classroom.
  3. The learning design is structured to ensure that both the online and in-person modalities are connected to provide a cohesive and integrated learning experience.

It’s important to note that a face-to-face class that simply uses an online component as a repository for course materials is not true blended learning. The first element in Maxwell’s definition, where the student independently controls some aspect of learning in the online environment, is key to distinguishing blended learning from the mere addition of technology.

You may also be familiar with other popular terms for blended learning, including hybrid or flipped classroom. Again, the common denominator is that the course design intentionally, and seamlessly, integrates both modalities to achieve the learning outcomes.

Let’s examine what the research says about the benefits of combining asynchronous, student-controlled learning with instructor-driven, face-to-face teaching.

Does Blended Learning Offer Benefits?

Blended Learning Icon

The short answer is yes.

The online component of blended learning can help “level the playing field.” In many face-to-face classes, students may be too shy or reluctant to speak up, ask questions, or offer an alternate idea. A blended environment combines the benefit of giving students time to compose thoughtful comments for an online discussion without the pressure and think-on-your-feet demand of live discourse, while maintaining direct peer engagement and social connections during in-classroom sessions (Hoxie, Stillman, & Chesal, 2014). Blended learning, through its asynchronous component, allows students to engage with materials at their own pace and reflect on their learning when applying new concepts and principles (Margulieux, McCracken, & Catrambone, 2015).

Since well-designed online learning produces equivalent outcomes to in-person classes, lecture and other passive information can be shifted to the online format, freeing up face-to-face class time for active learning, such as peer discussions, team projects, problem-based learning, supporting hands-on labs or walking through simulations (Bowen, Chingos, Lack, & Nygren, 2014). One research study found that combining online activities with in-person sessions also increased students’ motivation to succeed (Sithole, Chiyaka, & McCarthy, 2017).

What Makes Blended Learning So Effective?

Five young people studying with laptop and tablet computers on white desk. Beautiful girls and guys working together wearing casual clothes. Multi-ethnic group smiling.

Nearly all the research reviewed concluded that blended learning affords measurable advantages over exclusively face-to-face or fully online learning (U.S. Department of Education, Office of Planning, Evaluation, and Policy Development, 2009). The combination of technology with well-designed in-person interaction provides fertile ground for student learning. Important behaviors and interactions such as instructor feedback, assignment scaffolding, hands-on activities, reflection, repetition and practice were enhanced, and students also gained advantages in terms of flexibility, time management, and convenience (Margulieux, McCracken, & Catrambone, 2015).

Blended learning tends to benefit disadvantaged or academically underprepared students, groups that typically struggle in fully online courses (Chingosa, Griffiths, Mulhern, and Spies, 2017). Combining technology with in-person teaching helped to mitigate some challenges faced by many students in scientific disciplines, improving persistence and graduation rates. And since blended learning can be supportive for a broader range of students, it may increase retention and persistence for underrepresented groups, such as students of color (Bax, Campbell, Eabron, & Thomson, 2014–15).

Blended learning  benefits instructors, too. When asked about blended learning, most university faculty and instructors believe it to be more effective (Bernard, Borokhovski, Schmid, Tamim, & Abrami, 2014). The technologies used often capture and provide important data analytics, which help instructors more quickly identify under-performing students so they can provide extra support or guidance (McDonald, 2014). Many online tools are interactive, fun and engaging, which encourages student interaction and enhances collaboration (Hoxie, Stillman, & Chesal, 2014). Blended learning is growing in acceptance and often seen as a favorable approach because it synthesizes the advantages of traditional instruction with the flexibility and convenience of online learning (Liu, et al., 2016).

A Leap of Faith

Is blended learning right for your discipline or area of expertise? If you want to give it a try, there are many excellent internet resources available to support your transition.

Though faculty can choose to develop a blended class on their own, Oregon State instructors who develop a hybrid course through Ecampus receive full support and resources, including collaboration with an instructional designer, video creation and media development assistance. The OSU Center for Teaching and Learning offers workshops and guidance for blended, flipped, and hybrid classes. The Blended Learning Universe website, referenced earlier, also provides many resources, including a design guide, to support the transformation of a face-to-face class into a cohesive blended learning experience.

If you are ready to reap the benefits of both online and face-to-face teaching, I urge you to go for it! After all, the research shows that it’s a pretty safe leap.

For those of you already on board with blended learning, let us hear from you! Share your stories of success, lessons learned, do’s and don’ts, and anything else that would contribute to instructors still thinking about giving blended learning a try.

Susan Fein, Oregon State University Ecampus Instructional Designer
susan.fein@oregonstate.edu | 541-747-3364

References

  • Bax, P., Campbell, M., Eabron, T., & Thomson, D. (2014–15). Factors that Impede the Progress, Success, and Persistence to Pursue STEM Education for Henderson State University Students Who Are Enrolled in Honors College and in the McNair Scholars Program. Henderson State University. Arkadelphia: Academic Forum.
  • Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M., & Abrami, P. C. (2014). A meta-analysis of blended learning and technology use in higher education: From the general to the applied. J Comput High Educ, 26, 87–122.
  • Bowen, W. G., Chingos, M. M., Lack, K. A., & Nygren, T. I. (2014). Interactive learning online at public universities: Evidence from a six-campus randomized trial. Journal of Policy Analysis and Management, 33(1), 94–111.
  • Chingosa, M. M., Griffiths, R. J., Mulhern, C., & Spies, R. R. (2017). Interactive online learning on campus: Comparing students’ outcomes in hybrid and traditional courses in the university system of Maryland. The Journal of Higher Education, 88(2), 210-233.
  • Hoxie, A.-M., Stillman, J., & Chesal, K. (2014). Blended learning in New York City. In A. G. Picciano, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 327-347). New York: Routledge.
  • Liu, Q., Peng, W., Zhang, F., Hu, R., Li, Y., & Yan, W. (2016). The effectiveness of blended learning in health professions: Systematic review and meta-analysis. Journal of Medical Internet Research, 18(1). doi:10.2196/jmir.4807
  • Maxwell, C. (2016, March 4). What blended learning is – and isn’t. Blog post. Retrieved from Blended Learning Universe.
  • Margulieux, L. E., McCracken, W. M., & Catrambone, R. (2015). Mixing in-class and online learning: Content meta-analysis of outcomes for hybrid, blended, and flipped courses. In O. Lindwall, P. Hakkinen, T. Koschmann, & P. Tchoun (Ed.), Exploring the Material Conditions of Learning: Computer Supported Collaborative Learning (CSCL) Conference (pp. 220-227). Gothenburg, Sweden: The International Society of the Learning Sciences.
  • McDonald, P. L. (2014). Variation in adult learners’ experience of blended learning in higher education. In Blended Learning Research Perspectives (Vol. 2, pp. 238-257). Routledge.
  • Sithole, A., Chiyaka, E. T., & McCarthy, P. (2017). Student attraction, persistence and retention in STEM programs: Successes and continuing challenges. Higher Education Studies, 7(1).
  • U.S. Department of Education, Office of Planning, Evaluation, and Policy Development. (2009). Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Washington, D.C.

Image Credits

  • Blended Learning Icon: Innovation Co-Lab Duke Innovation Co-Lab [CC0]
  • Leap of Faith: Photo by Denny Luan on Unsplash
  • School photo created by javi_indy – www.freepik.com

One of the most common questions I get as an Instructional Designer is, “How do I prevent cheating in my online course?” Instructors are looking for detection strategies and often punitive measures to catch, report, and punish academic cheaters. Their concerns are understandable—searching Google for the phrase “take my test for me,” returns pages and pages of results from services with names like “Online Class Hero” and “Noneedtostudy.com” that promise to use “American Experts” to help pass your course with “flying grades.” 1 But by focusing only on what detection measures we can implement and the means and methods by which students are cheating, we are asking the wrong questions. Instead let’s consider what we can do to understand why students cheat, and how careful course and assessment design might reduce their motivation to do so.

A new study published in Computers & Education identified five specified themes in analyzing the reasons students provided when seeking help from contract cheating services (Amigud & Lancaster, 2019):

  • Academic Aptitude – “Please teach me how to write an essay.”
  • Perseverance – “I can’t look at it anymore.”
  • Personal Issues – “I have such a bad migraine.”
  • Competing Objectives – “I work so I don’t have time.”
  • Self-Discipline – “I procrastinated until today.”

Their results showed that students don’t begin a course with the intention of academic misconduct. Rather, they reach a point, often after initially attempting the work, when the perception of pressures, lack of skills, or lack of resources removes their will to complete the course themselves. Online students may be more likely to have external obligations and involvement in non-academic activities. According to a 2016 study, a significant majority of online students are often juggling other obligations, including raising children and working while earning their degrees (Clinefelter & Aslanian, 2016).

While issues with cheating are never going to be completely eliminated, several strategies have emerged in recent research that focuses on reducing cheating from a lens of design rather than one of punishment. Here are ten of my favorite approaches that speak to the justifications identified by students that led to cheating:

  1. Make sure that students are aware of academic support services (Yu, Glanzer, Johnson, Sriram, & Moore, 2018). Oregon State, like many universities, offers writing help, subject-area tutors and for Ecampus students, a Student Success team that can help identify resources and provide coaching on academic skills. Encourage students, leading up to exams or big assessment projects, to reach out during online office hours or via email if they feel they need assistance.
  2. Have students create study guides as a precursor assignment to an exam—perhaps using online tools to create mindmaps or flashcards. Students who are better prepared for assessments have a reduced incentive to cheat. Study guides can be a nongraded activity, like a game or practice quiz, or provided as a learning resource.
  3. Ensure that students understand the benefits of producing their own work and that the assessment is designed to help them develop and demonstrate subject knowledge (Lancaster & Clarke, 2015). Clarify for students the relevance of a particular assessment and how it relates to the weekly and larger course learning outcomes.
  4. Provide examples of work that meets your expectations along with specific evaluation criteria. Students need to understand how they are being graded and be able to judge the quality of their own work. A student feeling in the dark about what is expected from them may be more likely to turn to outside help.
  5. Provide students with opportunities throughout the course to participate in activities, such as discussions and assignments, that will prepare them for summative assessments (Morris, 2018).
  6. Allow students to use external sources of information while taking tests. Assessments in which students are allowed to leverage the materials they have learned to construct a response do a better job of assessing higher order learning. Memorizing and repeating information is rarely what we hope students to achieve at the end of instruction.
  7. Introduce alternative forms of assessment. Creative instructors can design learning activities that require students to develop a deeper understanding and take on more challenging assignments. Examples of these include recorded presentations, debates, case studies, portfolios, and research projects.
  8. Rather than a large summative exam at the end of a course, focus on more frequent smaller, formative assessments (Lancaster & Clarke, 2015). Provide students with an ongoing opportunity to demonstrate their knowledge without the pressure introduced by a final exam that accounts for a substantial portion of their grade.
  9. Create a course environment that is safe to make and learn from mistakes. Build into a course non-graded activities in which students can practice the skills they will need to demonstrate during an exam.
  10. Build a relationship with students. When instructors are responsive to student questions, provide substantive feedback throughout a course and find other ways to interact with students — they are less likely to cheat. It matters if students believe an instructor cares about them (Bluestein, 2015).

No single strategy is guaranteed to immunize your course against the possibility that a student will use some form of cheating. Almost any type of assignment can be purchased quickly online. The goal of any assessment should be to ensure that students have met the learning outcomes—not to see if we can catch them cheating. Instead, focus on understanding pressures a student might face to succeed in a course, and the obstacles they could encounter in doing so. Work hard to connect with your students during course delivery and humanize the experience of learning online. Thoughtful design strategies, those that prioritize supporting student academic progress, can alleviate the conditions that lead to academic integrity issues.


1 This search was suggested by an article published in the New England Board of Higher Education on cheating in online programs. (Berkey & Halfond, 2015)

References

Amigud, A., & Lancaster, T. (2019). 246 reasons to cheat: An analysis of students’ reasons for seeking to outsource academic work. Computers & Education, 134, 98–107. https://doi.org/10.1016/j.compedu.2019.01.017

Berkey, D., & Halfond, J. (2015). Cheating, student authentication and proctoring in online programs.

Bluestein, S. A. (2015). Connecting Student-Faculty Interaction to Academic Dishonesty. Community College Journal of Research and Practice, 39(2), 179–191. https://doi.org/10.1080/10668926.2013.848176

Clinefelter, D. D. L., & Aslanian, C. B. (2016). Comprehensive Data on Demands and Preferences. 60.

Lancaster, T., & Clarke, R. (2015). Contract Cheating: The Outsourcing of Assessed Student Work. In T. A. Bretag (Ed.), Handbook of Academic Integrity (pp. 1–14). https://doi.org/10.1007/978-981-287-079-7_17-1

Morris, E. J. (2018). Academic integrity matters: five considerations for addressing contract cheating. International Journal for Educational Integrity, 14(1), 15. https://doi.org/10.1007/s40979-018-0038-5

Yu, H., Glanzer, P. L., Johnson, B. R., Sriram, R., & Moore, B. (2018). Why College Students Cheat: A Conceptual Model of Five Factors. The Review of Higher Education, 41(4), 549–576. https://doi.org/10.1353/rhe.2018.0025

First, let’s start by considering the characteristics of effective feedback in general. What comes to mind?

sound waves

Perhaps you hear in your head (in the authentically authoritative voice of a past professor) the words timely, frequent, regular, balanced, specific. Perhaps you recall the feedback sandwich–corrective feedback sandwiched between positive feedback. Perhaps you consider rubrics or ample formative feedback to be critical components of effective feedback. You wouldn’t be wrong.

As educators, we understand the main characteristics of effective feedback. But despite this fact, students are often disappointed by the feedback they receive and faculty find the feedback process time consuming, often wondering if the time commitment is worth it. As an instructional designer, I hear from faculty who struggle to get students to pay attention to feedback and make appropriate changes based on feedback. I hear from faculty who struggle to find the time to provide quality feedback, especially in large classes. The struggle is real. I know this because I hear about it all the time.

I’m glad I hear about these concerns. I always want faculty to share their thoughts about what’s working and what’s not working in their classes. About a year or two ago, I also started hearing rave reviews from faculty who decided to try audio feedback in their online courses. They loved it and reported that their students loved it. Naturally, I wanted to know if these reports were outliers or if there’s evidence supporting audio feedback as an effective pedagogical practice.

I started by looking for research on how audio feedback influences student performance, but what I found was research on how students and faculty perceive and experience audio feedback.

What I learned was that, overall, students tend to prefer audio feedback. Faculty perceptions, however, are mixed, especially in terms of the potential for audio feedback to save them time.

While the research was limited and the studies often had contradictory results, there was one consistent takeaway from multiple studies: audio feedback supports social presence, student-faculty connections, and engagement.

While research supports the value of social presence online, audio feedback is not always considered for this purpose. Yet, audio feedback is an excellent opportunity to focus on teaching presence by connecting one-to-one with students.

If you haven’t tried audio feedback in your classes, and you want to, here are some tips to get you started:

  1. Use the Canvas audio tool in Speedgrader. See the “add media comment” section of the Canvas guide to leaving feedback comments. Since this tool is integrated with Canvas, you won’t have to worry about upload and download times for you or your students.
  2. Start slow. You don’t have to jump into the deep end and provide audio comments on all of your students’ assignments. Choose one or two to get started.
  3. Ask your students what they think. Any time you try something new, it’s a good idea to hear from your students. Creating a short survey in your course to solicit student feedback is an excellent way to get informal feedback.
  4. Be flexible. If you have a student with a hearing impairment or another barrier that makes audio feedback a less than optimal option for them, be prepared to provide them with written feedback or another alternative.

Are you ready to try something new? Have you tried using audio feedback in your course? Tell us how it went!

References:

Image by mtmmonline on Pixabay.

Note: This post was based on a presentation given at the STAR Symposium in February 2019. For more information and a full list of references, see the presentation slide deck.

 

As a stranger give it welcome.” – Shakespeare

Students need tactics for when they encounter strange people or strange ideas. (Wilson, 2018) First-time online students are a perfect example of individuals who are encountering something new, strange, and often uncomfortable, for the first time. Welcoming that strange experience should include a little bit of information gathering. Look for positive and negatives in situations to help decide how you view it and, most of all, have an open mind.

To help potential online students make decisions, when they take their first online course, Marie Fetzner asked unsuccessful online students: “What advice would you give to students who are considering registering for an online course?”

Their top 13 responses:

  1. Stay up with the course activities—don’t get behind
  2. Use good time management skills
  3. Use good organizational skills
  4. Set aside specific times during each week for your online class
  5. Know how to get technical help
  6. A lot of online writing is required
  7. There is a lot of reading in the textbook and in online discussions—be prepared
  8. Regular online communications are needed
  9. Ask the professor if you have questions
  10. Carefully read the course syllabus
  11. Be sure you understand the requirements of the online course discussions
  12. Understand how much each online activity is worth toward your grade
  13. Go to the online student orientation, if possible

 

These responses raise the question: how can we better help our students? From the advice above, we know students struggle with time management, expectations, communication, etc.  So, what can we do to help foster their success?

  1. Reach out to students who seem to be lagging behind. A quick email is sometimes all it takes to open up that line of communication between you and the student.
  2. Provide approximate times for course materials and activities. Students can use this to better plan for the requirements that week.
  3. Keep your course organized so students can spend more time with the content instead of search for the content.
  4. Remind students about where to access help and support services.
  5. Develop a Q&A discussion board for student questions about the course. Often, more than one student has the same question and often other students might already know the answer. Have this be something you check daily to answer questions quickly so students can continue with their learning.
  6. Use rubrics for grading. By giving the students rubrics, they will know what is expected, you will get responses closer to your expectations, and it makes grading easier!

 

Welcome these ideas as you would a new experience. Give it a little try, jump right in, confer with colleagues, or chose your own path. Know that as an instructor or developer for an online course, you have the ability to help your students be successful!

References

Fetzner, Marie. (2013). What Do Unsuccessful Online Students Want Us to Know? Journal of Asynchronous Learning Networks, 17(1), 13-27.

Wilson, J. (2018). “As a stranger give it welcome”: Shakespeare’s Advice for First-Year College Students. Change, 50(5), 60.

 

Active Learning: What Does the Research Show?

We often hear about new approaches in teaching, and some can take on near-mythical status. That might be the case for active learning. It’s been widely touted as the “most effective” pedagogical approach, but unless you have time to dig through the research, it may not be easy to determine if this trend is applicable – or beneficial – to your teaching and discipline.

So what does the research say about active learning? This article provides a brief summary of research results for active learning applied in STEM subjects.

Why Use Active Learning?

Before we discuss why active learning is beneficial, let’s clarify exactly what active learning is. As opposed to passive learning, such as listening to a traditional lecture, active learning requires students to do something and think about what they are doing (Bonwell & Eison, 1991).

Much research supports the power and benefits of active learning. Students have better retention and understanding when they are actively involved in the learning process (Chickering & Gamson, 1987). Active engagement promotes higher order thinking, since it often requires students to evaluate, synthesize, and analyze information. Research indicates that students develop strong connections, apply concepts to authentic scenarios, and dive deeply into the content, often discovering an unexpected level of engagement that is exciting and stimulating (Nelson, 2002).

Does Active Learning Produce Better Outcomes in STEM?

Research indicates the answer is “yes!” In an introductory physics course, Harvard professor Eric Mazur (2009) found that his students were not able to answer fundamental physics scenarios or grasp basic concepts from traditional lectures. As a result, he stopped lecturing and has become an outspoken champion for active learning.

An organic chemistry class adopted active learning, resulting in significantly higher grades for students in the active classroom than in the control group, with the greatest effect coming from low-achieving students (Cormier and Voisard, 2018). In an introductory undergraduate physics course, two large student groups were compared. The active learning section showed greater attendance, more engagement, and more than double the achievement on an exam (Deslauriers, Schelew and Weiman, 2011).

In 2004, a skeptical Michael Prince (2004) researched the then-current literature on active learning to determine whether it offered consideration for engineering. He found that many active learning recommendations directly conflicted with historical engineering teaching practices. Methods like breaking lectures into small, topic-specific segments, interspersing lecture with discussion, using problem-based scenarios, or grouping students for collaborative learning were uncommon. Ultimately, Prince reluctantly concluded that the bulk of research evidence indicated that these types of teaching methods might foster better retention and enhance critical thinking.

What About Non-STEM Classes?

Although these findings are from research in STEM disciplines, active learning contributes to better grades, more engagement, increased student satisfaction and better retention in any topic (Allen-Ramdial & Campbell, 2014). Active learning tends to increase involvement for all students, not just those already motivated to learn. Peer-to-peer collaboration helps students solve problems and better understand more complex content (Vaughan et al., 2014). Research indicates that students learn more when they actively participate in their education and are asked to think about and apply their learning (Chickering & Gamson, 1987).

Try It Yourself!

The articles cited in this post offer a number of easy-to-implement active learning suggestions that are effective in ether a face-to-face or online classroom. Give one or two a try and see if your students are more engaged in the learning  process.

  • Offer opportunities for students to practice and examine concepts with peers, such as through debates.
  • Break lectures into small, granular topics and intersperse with questions or problem-solving activities based on real-world applications. Video technologies can easily accommodate this approach for online learning.
  • Structure quizzes or other activities to give immediate feedback. Answer keys and auto-graded assessments are available as a feature in virtually any learning management system.
  • Consider “flipping” the classroom by asking students to read or watch lecture videos before in-person class sessions.
  • Design activities that encourage students to work in small groups or collaborate with others.
  • Add a personal reflection component to help students uncover new ideas or insights.

Although no single definitive study has yet been published to unequivocally prove the efficacy of active learning, the body of evidence from many studies forms a compelling argument that it is does offer significant benefits (Weimer, 2012). Give it a try and see how active learning works in your discipline.

Susan Fein, Ecampus Instructional Designer | susan.fein@oregonstate.edu

References

  • Allen-Ramdial, S.-A. A., & Campbell, A. G. (2014, July). Reimagining the Pipeline: Advancing STEM Diversity, Persistence, and Success. BioScience, 64(7), 612-618.
  • Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.
  • Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.
  • Cormier, C., & Voisard, B. (2018, January). Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades. Frontiers in ICT, 4, 30. doi:https://doi.org/10.3389/fict.2017.00030
  • Deslauriers, L., Schelew, E., & Wieman, C. (2011, May). Improved Learning in a Large-Enrollment Physics Class. Science, 332, 862-864.
  • Mazur, E. (2009, January 2). Farewell, Lecture? Science, 323(5910), 50-51. Retrieved from http://www.jstor.org/stable/20177113
  • Nelson, G. D. (2002). Science for All Americans. New Directions for Higher Education, 119(Fall), 29-32.
  • Prince, M. (2004, July). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 223-231.
  • Vaughan, N., LeBlanc, A., Zimmer, J., Naested, I., Nickel, J., Sikora, S., . . . O’Connor, K. (2014). To Be or Not To Be. In A. G. Picciano, C. D. Dziuban, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 127-144). Routledge.
  • Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Photo Credits

Auditorium – Photo by Mikael Kristenson on Unsplash
Engagement – Photo by Priscilla Du Preez on Unsplash
Hands – Photo by Headway on Unsplash
Library – Photo by Susan Yin on Unsplash
Contemplation – Photo by sean Kong on Unsplash

In a time when ideas and technology are rapidly changing within online education, it can be increasingly challenging to determine what students truly value and how to measure what impacts their overall success. Research has shown that online learners who are engaged with the material, intrinsically motivated, possess self-regulation, and have a positive or growth mindset have preferable outcomes – yet the correlation between these areas has not been thoroughly explored (Richardson, 2017; Diep, 2017; Sahin, 2007). Emerging from the intersection of positive psychology and higher education is a new vision for student success that encompasses these areas called thriving.

Created by Dr. Laurie Schreiner, Chair and Professor in the department of Higher Education at Azuza Pacific University, the Thriving Quotient measures the characteristics of thriving, and has been used with thousands of students in hundreds of institutions around the world. Schreiner defines thriving students as those who are “engaged in the learning process, invest effort to reach educational goals, and are committed to making a meaningful difference in the world around them” (Schreiner, 2010).

The five factors of thriving are grouped as:

  • Engaged Learning
  • Academic Determination
  • Positive Perspective
  • Social Connectedness
  • Diverse Citizenship

Thriving students deeply value their education, possess the self-efficacy and determination to persist towards their long term goals, feel connected to their institution, faculty, and other students, and want to make a positive impact on the world. While all five factors of thriving are connected and crucial to student success, the area that instructors and instructional designers may most directly impact is Social Connectedness. Social connectedness refers to the support networks we build, the relationships that are cultivated, and how connected we feel to our community. Social connectedness can span the areas of student to student connection, student to instructor connection, and student to administrator connection. Student interaction with other students and instructors has been determined to be fundamental to their experience as an online learner (Symeonides, 2015; Rust, 2015; Vianden, 2015; Cole, Shelley, Swartz, 2014; Allen, 2008).

Within this context of social connectedness, the research on social presence and creating a sense of belonging contribute to the understanding of how relationships may contribute to online student satisfaction. In Jörg Vianden’s study on what matters most to students, students were asked to report on their most satisfying and dissatisfying experiences. For both categories, they focused primarily on their interpersonal relationships (Vianden, 2015). In regards to how these impacted students’ interactions, the most common dissatisfaction regarding faculty relationships was disrespect and unresponsiveness. Students not only desire positive relationships with their faculty, staff, and peers, but it is exceedingly important in predicting their academic outcomes. Social presence and connection with others was found to be exceedingly important in predicting student satisfaction and perceived learning (Richardson, 2017). The connection is even furthered with the assertion that social presence should be the foundation of critical thinking and learning objectives for students (Garrison & Akyol, 2013).

What does all of this mean for instructors?

As an instructor, you are often the primary and most valued relationship and connection that an online student will have in their education. While students have additional support from academic advisors, student success professionals across departments, and other student-facing roles, these individuals will not have the daily interaction and impact that an instructor has with their students. In partnership with instructional designers, instructors have the ability to positively create spaces for connection through teaching preferences, course design, resource choices, and communication policies.

Some common guidelines for creating connection within your classroom include:

  • Utilizing videos or screencasts so that students can feel more connected to their instructors and create a more welcoming and personal environment
  • Responding to student inquiries in discussion boards and by e-mails in a timely manner
  • Completing grades for assignments promptly so that students feel comfortable with knowing their progress and any adjustments that might be needed
  • Providing opportunities for students to connect with their instructor and one another using tools such as videos in the discussion forums, FlipGrid, or WebEx/Zoom conferencing for recordings and lectures.

Below are some comments from our most recent student survey that speak to the importance of connectedness for online learners.

“I would encourage professors to hold an optional “live” WebEx meeting with their classes at the beginning of each term. This would help build a better connection between the students and teachers and allow students to ask any questions they might have about the course ahead of time.”

 

“Don’t be afraid to communicate with your teachers. They are usually very accommodating and sincerely wish to help you achieve academic success.”

Please know that you can always reach out to the Ecampus Success Counselors with questions or to refer students that may be struggling or not participating. We appreciate the great work you are continually doing and value the critical role you hold in educating, guiding, and empowering our online students.

You can create an easy study tool that students can take with them on their smartphones, use on the computer, and easily engage with as they study for your class.

Cram is a free flash card creation tool that allows instructors and students to develop a study tool for their students.  You can create study aids without an account .  Cards can be shared publicly or be made available only to those who have a link.  Instructors and students can create these study aids.  Imagine creating a short tool for students and then creating an assignment in which they create flashcards for the entire class to use!

Cool features:cram logo

  • Import information from Google Docs
  • Copy and paste from Microsoft Word
  • Create study aids in a vast number of different languages
  • Create 3-sided cards
  • Add images

As students study with the cards, they have three options to work with:

  1. Study like a regular set of cards
  2. Self-test, telling the program if they got it right or not to keep score and to allow them to review in the next round only the cards they got wrong
  3. Test themselves using a one of 4 testing options. (Matching, Written, Multiple Choice, and True/False)

See a six-card sample to try it for yourself!