Jake Jacobs (far right) and his family.

Robert  “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division. With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers. Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events. Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions. Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.

Robert “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division.  With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers.  Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events.  Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions.  Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.

This type of work while exciting is not new, as astronautical projects have been a driving force in Jake’s life. His passion for space has taken him from an undergraduate degree in Aerospace Engineering, from Purdue University, to satellite remote sensing at Oregon State University (OSU) where he is completing a PhD in Physics. Before arriving at OSU, Jake obtained a master’s degree in physics from Eastern Michigan University (EMU). While there, he worked with funds from the NASA Space Grant to develop an ion source that would be used in sputtering experiments to model the solar wind.

Connecting with his advisor, Dr. Larry O’Neill at OSU, has created an excellent partnership, as they bring different strengths to the table.  Dr. O’Neill’s wealth of experience has helped Jake to greatly advance his knowledge of atmospheric and oceanic sciences.  While Jake’s physics and math background have assisted with advancing spatial derivative analysis techniques.  This newest project has combined Jake’s passion for physics and math with a novel astronautical venture. He greatly looks forward to continuing this project with the support of the FINESST Fellowship.

In his limited free time, Jake enjoys reading, hiking, swimming and playing disc golf with his two small children, wife and two dogs.  An extra joy in his life is watching his children grow to love the universe and all its boundless opportunities.  The family also enjoys star gazing, which can be difficult in Oregon, so they use a home star theater system to learn about space, stars and the world above.

Reposted from impact.science.oregonstate.edu

A senior’s gut decision in high school to major in physics holds steady four years later

Looking back on his gut decision in high school to major in physics after taking a class in it, graduating senior Abe Teklu remains somewhat mystified. “I guess I was just really confident,” he laughs.
Abe grew up around numbers and changing locations, moving from Ethiopia to Arizona at age six when his father got an engineering job at Intel, and then moving to Colorado before his family settled outside of Portland when he was 12.
His family is mathematically inclined. His mom is an accountant and his dad, who not so secretly yearned to be a mathematician, is an engineer who reads calculus books and earned a master’s degree in fluid dynamics. This home field advantage explains some of Abe’s youthful confidence (he “loved math” even as a child) but since then Abe has carried the ball all on his own.
At Oregon State as an Honors physics student, Abe has remained confident – at least most of the time – as well as comfortable with numbers and shifting contexts. He has had three research internships. The first was the summer after his sophomore year when he had a paid internship at Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) in Evanston, Illinois, in a rather niche but fascinating area of speculative research called astrobiology. There Abe analyzed mathematical models of theoretical predator-prey systems not limited to planet Earth.
The summer before his junior year, Abe headed down to San Diego for another paid internship, this time at the U.S. Department of Energy’s DIII-D National Fusion Facility. The facilty consists of a tokamak, a magnetic fusion device which Abe describes as “a big metal donut spinning plasma to get fusion energy.” Abe used magnetohydrodynamics (MHD) theory to model plasma confinement, with the goal of understanding which conditions better spread heat flux in the divertor region.
In his third research experience, Abe spent more than two years working in physics department head Heidi Schellman’s Particle Physics Research Group, analyzing neutrino-antineutrino data as part of the MINERvA, a major international research effort exploring matter-antimatter differences in neutrino physics. This involved aiming a beam of neutrinos from Illinois to South Dakota. Specifically, Abe worked on the recoil energies recorded when the rare neutrino-antineutrino reactions hit parallel strips of the scintillator, each of which is connected to a photomultiplier tube that determines how much energy is deposited in a strip.
Abe’s research experiences beyond the classroom gave him many advantages. For one, the DIII-D fusion internship formed the basis for his senior thesis. He also learned valuable lessons about the nature of scientific work.
“Unlike class, where there is always an answer, research is open-ended. It was difficult for me at first, but I came to appreciate that even if you don’t solve a problem, you are contributing to a much larger research effort with scientists around the world that will one day lead to a solution.”
Throughout his four years at OSU, community and relationships were key to Abe’s success, a sentiment reflected in his two top pieces of advice for new students.
“Have as much fun as you can freshman year. Talk toeveryone. You will have the most free time this year and so it’s a great time to meet new people and make friends. It gets harder after that.”
As an Honors College freshman, Abe enjoyed meeting friends in his dorm, Cauthorne, and also hung out in West so often that he was mistaken as a resident. He was and is “surprised by the amount of really smart people here. So many amazing people – and it’s so cool now to see all of my friends going off to exciting new destinations next year, from MIT to Brown to AI research!”
His second piece of advice?
“Talk to professors. Go to office hours. Not just to talk about academics, but just to talk about life. It’s helped me out a lot.”
Some of his favorite professors to hang out with are physicists Corinne Monogue, who he calls a “great teacher and person to talk to about anything at all” and Heidi Schellman. Abe suggests another good reason to talk with professors:  It’s a “great way to start research sooner.”
To wit, when Abe visited to Schellman during her office hours, she began describing her research and Abe just jumped in and asked if he could help.
“That day she gave me a key to her lab and I started doing research!” Two years later, Abe still has a coveted seat in Schellman’s Lab and is currently mentoring a new student to take his place after graduation.
Despite his success at OSU, Abe has faced his share of rejection and challenging times. Before joining the Schellman Lab, he was turned down as a freshman for research positions. The fall of his senior year was a really difficult time. After an intense summer working at the fusion facility DIII-D in San Diego, he returned to campus for a nonstop term which on top of his usual demanding coursework included studying for the Physics GRE, applying to graduate schools, writing his senior thesis and dealing with the inevitable “personal stuff.”
“I was overwhelmed and my confidence was shaken. Was I good enough? I had imposter syndrome. The only thing that got me out of it,” Abe reflects, “was just to endure. I just kept going step by step, every single day. I had to keep going and I did and it finally got better.”
It certainly did. Abe was accepted into the physics Ph.D. program at Stonybrook University in Long Island, New York, remarking with great enthusiasm upon the fact that there are no less than “60-70 physics researchers there!” Not wasting any time, he will jumpstart his graduate research this summer at CERN in Geneva, Switzerland, working on a yet-to-be-defined research project with his graduate advisor.
Abe is grateful for the science education he has received at Oregon State and was not surprised when he heard that the Department of Physics recently received a national award for improving undergraduate physics education.
“All of my professors were great,” he said. The junior-year Paradigms in Physics series in particular, which was redesigned to include interactive pedagogies and real-world applications to better reflect how professional physicists think, was a real game-changer for Abe.
“[The junior-year Paradigms in Physics] was hard, but it was great and everyone in the class bonded together. We came out feeling that we could do anything!”
Abe’s gratitude extends to the many scholarships he received that helped cement his choice to go to Oregon State. He received the university’s four-year Academic Achievement award as well as a freshman year Honors College scholarship, a Kenneth S. Krane Scholarship in Physics and a David B. Nicodemus Scholarship in Physics.

Jim Ketter at a Dept. Picnic, photo by Randall Milstein

Jim Ketter, who served as lab guru and instructor for many years, passed away on June 6th 2018. Jim joined our department in 2005 after a varied career as a geophysicist, high school teacher, graduate student and physics instructor at LBCC and Oregon State.  He was a warm and sensitive instructor and the go-to gadget guy who kept our labs running and our department presentable. In addition to the considerable load of teaching and keeping our labs humming, he loved doing outreach – Discovery days, supervising the SPS and generally bringing his enthusiasm for physics to everyone he met.

There will be a  celebration of life for Jim on July 14th from 2pm-5pm at Deluxe Brewing: 635 NE Water Ave. Albany, Oregon.

http://www.fisherfuneralhome.com/obituary/Jim-Ketter/Albany-Oregon/1802004

has more details and an obituary.

His family requests that donations in his memory go to Albany Parks and Recreation Foundation in lieu of flowers.

The American Physical Society has recognized OSU Physics for Improving Undergraduate Physics Education.

We are one of three institutions to receive the award this year. https://www.aps.org/programs/education/undergrad/faculty/awardees.cfm  explains the award and lists previous winners

For 21 years, the physics department at Oregon State has been a national model for its holistic approach to improving the educational experience for undergraduates, from the nationally recognized, upper division curriculum redesign—Paradigms in Physics, through lower‐division reform, thesis research experiences for all majors, and attention to co‐curricular community‐building. We are dedicated to building a strong cohort group of students, prepared for a wide range of careers. For the broader community, we produce and freely share cutting‐edge curricular materials based on our own physics education research.”

Prof. Janet Tate has been named one of three Oregon State University’s 2018 Distinguished Professor honorees for 2018

From the press release:

Janet Tate setting up her superconducting demonstration.

The university has presented the Distinguished Professor award annually since 1988 to active OSU faculty members who have achieved extraordinary national and/or international stature for their contributions in research and creative work, education, outreach and engagement, and service.

Professor Tate’s research focuses on creating new semiconductors with transparent circuits with electrical and optical properties that help solve problems such as the efficient conversion of solar energy and efficient light emission. Her research stimulated the invention of the transparent oxide transistor, the enabling technology for the Retina 5K display now found in many Apple products. Tate’s contributions in the classroom earned her the Frederick H. Horne Award for Sustained Excellence in Teaching Science in 2002 and two OSU Mortar Board top professor awards.

For more information regarding the 2018 Distinguished Professors, please visit the OSU news release on the award recipients here.

 

 

OSU’s August 19-21 eclipse event, OSU150 Space Grant Festival: A Total Eclipse Experience, was featured on KMTR on August 19th.

Department of Physics graduate student Dr. Atul Chhotray was interviewed for the story.
You can see the full piece here.

The OSU Astronomy Club was very active in the educational outreach stations at this event.
Thank you to our volunteers for your time and enthusiasm in making last weekend a fun, educational experience.

 


This year’s winner of the WIC Culture of Writing Award in Physics is Jeremy Meinke, for his thesis entitled, “Single-Molecule Analysis of a Novel Kinesin Motor Protein.” Jeremy worked under the direction of Prof. Weihong Qiu.  He was with the Qiu research group for two years and in 2016, he received URISC and SURE awards to support his work. Jeremy says of the OSU Physics Department, “I enjoyed the range of physics topics the upper division classes offered, which kept me constantly thinking about new concepts.  Overall, it was a great place for me to study physics. I truly benefited from the research experience.”

Continue reading