Prof. Bo Sun has received an NSF CAREER award for his biophysics research. Please look at the longer IMPACT article for details. (And he’s also the 2019 Richard T. Jones New Investigator Award for the Medical Research Foundation of Oregon, more details on that after the ceremony in Portland later this term.)
Author Archives: Heidi Schellman
Graduate Student Robert “Jake” Jacobs wins a NASA FINESST Award
Robert “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division. With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers. Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events. Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions. Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.
Robert “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division. With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers. Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events. Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions. Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.
This type of work while exciting is not new, as astronautical projects have been a driving force in Jake’s life. His passion for space has taken him from an undergraduate degree in Aerospace Engineering, from Purdue University, to satellite remote sensing at Oregon State University (OSU) where he is completing a PhD in Physics. Before arriving at OSU, Jake obtained a master’s degree in physics from Eastern Michigan University (EMU). While there, he worked with funds from the NASA Space Grant to develop an ion source that would be used in sputtering experiments to model the solar wind.
Connecting with his advisor, Dr. Larry O’Neill at OSU, has created an excellent partnership, as they bring different strengths to the table. Dr. O’Neill’s wealth of experience has helped Jake to greatly advance his knowledge of atmospheric and oceanic sciences. While Jake’s physics and math background have assisted with advancing spatial derivative analysis techniques. This newest project has combined Jake’s passion for physics and math with a novel astronautical venture. He greatly looks forward to continuing this project with the support of the FINESST Fellowship.
In his limited free time, Jake enjoys reading, hiking, swimming and playing disc golf with his two small children, wife and two dogs. An extra joy in his life is watching his children grow to love the universe and all its boundless opportunities. The family also enjoys star gazing, which can be difficult in Oregon, so they use a home star theater system to learn about space, stars and the world above.
Graduate Student Tyler Parsotan wins a NASA FINESST Award
Tyler Parsotan has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the extremely competitive Astrophysics category. His proposal, titled “Demystifying the Interplay between Explosion Dynamics and Electromagnetic Radiation in Gamma Ray Bursts”, was one of the 11% of selected proposals in this category.
Originally from NY, Tyler is a first generation student. His family is from the Caribbean island nation of Trinidad and Tobago. He acquired a BS in Space Physics from Embry-Riddle Aeronautical University and is now working on a PhD in Physics at Oregon State University.
Tyler is currently a fourth year graduate student working with Dr. Davide Lazzati on understanding the most powerful explosions in the Universe known as Gamma Ray Bursts. These events are so energetic that in the first few seconds of the explosion, they release more energy than our sun will emit in its entire lifetime. Understanding these events allows us to get a better handle on how matter behaves in extreme conditions and may eventually lead to using these Gamma Ray Bursts as tools that can uncover new cosmological truths.
Besides working on his research project, Tyler is the president and co-founder fo the OSU astronomy Club. The club is focused on fostering interest in astronomy at OSU and the community of Corvallis in general. Tyler, with the help of many other undergraduate and graduate students, has hosted the Astronomy Open House events where members fo the public are invited to Weniger Hall to learn about astronomy though interactive demos and rooftop observations. More information regarding OSU Astronomy can be found at: https://physics.oregonstate.edu/astronomy-club
Jihan Kim wins the 2018 Physics Department Graduate Research Award
Graduate Student Jihan Kim has won the 2018 Physics Department Graduate Research Award
Jihan Kim works with Prof. Bo Sun on biophysical problems. Jihan’s research focuses on the mechanics of cancer-extra-cellular medium (ECM) interactions, which is one of the major factors dictating the physiology of tumors. This is a particularly fertile ground for interdisciplinary research, as physicists are trained to analyze forces in complex systems. Jihan takes advantage of his physics knowledge in understanding deep biological questions.
Jihan’s first project is to measure the force exerted by cancer cells in 3D collagen matrices, which simulate a realistic tissue environment. He quickly learned MATLAB programing, and wrote a sophisticated image analysis algorithm to enhance images, and to determine the 3D deformation field caused by cancer cells. After publishing his first paper in PLoS ONE, Jihan noticed that a pair of cancer cells can permanently remodel a collagen matrix by creating a bundle of concentrated collagen fibers between them. He talked to a friend during the APS meeting about the observation, which eventually evolved into a collaborative project published in Nature Communications.
Having studied the forces generated by cancer cells and how these forces modify the cells’ environment, Jihan is working on his latest project. In this project, he studies how the environment direct cancer migration. Once completed, his PhD thesis will have a completed loop indicating the feedback between cancer cells and their physical environment.
Prof. Ethan Minot receives the 2018 Milton Harris Award in Basic Research
A belated post from last Fall:
Ethan Minot, associate professor of physics, received the Milton Harris Award in Basic Research for his impressive accomplishments as a scientist. At Oregon State, Minot has built a world-class materials physics laboratory for the study of the structure and properties of carbon nanomaterials and devices for nanoelectronics.
His research at Oregon State has pushed the limit of fundamental properties of nanoelectronic devices, which have a broad range of applications to biosensing and solar energy harvesting. Some of his achievements are: identifying the fundamental noise mechanism that limits the performance of graphene biosensors in liquid environments; becoming the first to electrically generate and detect single point defects; reaching a new level of control over point defect chemistry; and other pioneering advances in the development of high-quality nanodevices and biosensors.
Reposted from http://impact.oregonstate.edu/2018/10/recognizing-research-and-administrative-excellence/
Student Profile: A senior’s gut decision in high school to major in physics holds steady four years later
Reposted from impact.science.oregonstate.edu
A senior’s gut decision in high school to major in physics holds steady four years later
“Unlike class, where there is always an answer, research is open-ended. It was difficult for me at first, but I came to appreciate that even if you don’t solve a problem, you are contributing to a much larger research effort with scientists around the world that will one day lead to a solution.”
“Have as much fun as you can freshman year. Talk toeveryone. You will have the most free time this year and so it’s a great time to meet new people and make friends. It gets harder after that.”
“Talk to professors. Go to office hours. Not just to talk about academics, but just to talk about life. It’s helped me out a lot.”
“I was overwhelmed and my confidence was shaken. Was I good enough? I had imposter syndrome. The only thing that got me out of it,” Abe reflects, “was just to endure. I just kept going step by step, every single day. I had to keep going and I did and it finally got better.”
“[The junior-year Paradigms in Physics] was hard, but it was great and everyone in the class bonded together. We came out feeling that we could do anything!”
Bee-ophysics in the news – Ostroverkhova lab studies bee visual response
The Ostroverkhova group’s work on bee vision had attracted a lot of attention!
KATU has an interview with Oksana Ostroverkhova at: https://katu.com/news/local/wild-bees-are-attracted-to-blue-fluorescent-light-oregon-state-university-research-finds
Sci-news has an article http://www.sci-news.com/biology/bees-blue-fluorescent-light-06121.html
and there is a press release to go with their recent paper in Journal of Comparative Physiology A. https://link.springer.com/article/10.1007/s00359-018-1269-x
CORVALLIS, Ore. – Researchers at Oregon State University have learned that a specific wavelength range of blue fluorescent light set bees abuzz.
The research is important because bees have a nearly $15 billion dollar impact on the U.S. economy – almost 100 commercial crops would vanish without bees to transfer the pollen grains needed for reproduction.
“The blue fluorescence just triggered a crazy response in the bees, told them they must go to it,” said the study’s corresponding author, Oksana Ostroverkhova. “It’s not just their vision, it’s something behavioral that drives them.”
The findings are a powerful tool for assessing and manipulating bee populations – such as, for example, if a farmer needed to attract large numbers of bees for a couple of weeks to get his or her crop pollinated.
“Blue is broad enough wavelength-wise that we needed to figure out if it mattered to the bees if the light emitted by the sunlight-illuminated trap was more toward the purple end or the green end, and yes, it mattered,” Ostroverkhova said. “What’s also important is now we’ve created traps ourselves using stage lighting filters and fluorescent paint – we’re not just reliant on whatever traps come in a box. We’ve learned how to use commercially available materials to create something that’s very deployable.”
Fluorescent light is what’s seen when a fluorescent substance absorbs ultraviolet rays or some other type of lower-wavelength radiation and then immediately emits it as higher-wavelength visible light – think about a poster whose ink glows when hit by the UV rays of a blacklight.
Like humans, bees have “trichromatic” vision: They have three types of photoreceptors in their eyes.
Both people and bees have blue and green receptors, but the third type for people is red while the third kind for bees is ultraviolet – electromagnetic energy of a lower wavelength that’s just outside the range of human vision.
Flowers’ vibrant colors and patterns – some of them detectable only with UV sight – are a way of helping pollinators like bees find nectar, a sugar-rich fluid produced by plants. Bees get energy from nectar and protein from pollen, and in the process of seeking food they transfer pollen from a flower’s male anther to its female stigma.
Building on her earlier research, Ostroverkhova, a physicist in OSU’s College of Science, set out to determine if green fluorescence, like blue, was attractive to bees. She also wanted to learn whether all wavelengths of blue fluorescence were equally attractive, or if the drawing power tended toward the green or violet edge of the blue range.
In field conditions that provided the opportunity to use wild bees of a variety of species – most bee-vision studies have been done in labs and used captive-reared honeybees – Ostroverkhova designed a collection of bee traps – some non-fluorescent, others fluorescent via sunlight – that her entomology collaborators set up in the field.
Under varying conditions with a diverse set of landscape background colors, blue fluorescent traps proved the most popular by a landslide.
Researchers examined responses to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence with wavelengths of 420 to 480 nanometers and 510 to 540 nanometers, respectively.
They found out that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue.
“And when we selectively highlighted the blue photoreceptor type, we learned the bees preferred blue fluorescence in the 430- to 480-nanometer range over that in the 400-420 region,” Ostroverkhova said.
Findings were recently published in the Journal of Comparative Physiology A. The Agricultural Research Foundation and OSU supported this research.
\
Editor’s note: Images are available at http://bit.ly/2JO7ypl and http://bit.ly/2MA4080
In Memorium: Jim Ketter (1957-2018)
Jim Ketter, who served as lab guru and instructor for many years, passed away on June 6th 2018. Jim joined our department in 2005 after a varied career as a geophysicist, high school teacher, graduate student and physics instructor at LBCC and Oregon State. He was a warm and sensitive instructor and the go-to gadget guy who kept our labs running and our department presentable. In addition to the considerable load of teaching and keeping our labs humming, he loved doing outreach – Discovery days, supervising the SPS and generally bringing his enthusiasm for physics to everyone he met.
http://www.fisherfuneralhome.com/obituary/Jim-Ketter/Albany-Oregon/1802004
has more details and an obituary.
His family requests that donations in his memory go to Albany Parks and Recreation Foundation in lieu of flowers.
Video from Prof. Corinne Manogue’s Gilfillan Lecture
See the IMPACT article (link below) for a long writeup on the Gilfillan Lecture that Prof. Manogue gave on April 5th. But here is the video https://youtu.be/U23SnDlqOHQ.
Gilfillan Lecture: Catalyzing the transformation of science learning
OSU press release: Fungi-produced pigment shows promise as semiconductor material
The Ostraverkhova group’s work on xylindein, an organic semiconductor produced naturally by fungi, has been featured in a press release.
http://today.oregonstate.edu/news/fungi-produced-pigment-shows-promise-semiconductor-material