Where did you say you were?

Expedition log. March 2, 2015. King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

After a grueling 48+ hours of travel (including driving to and from airports, flight time, and layovers), we have arrived in Saudi Arabia. My feet hurt, my back hurts, my head hurts, and I am exhausted. In 2015, it should never take so long to get really anywhere. But we booked our flights only a week ago; our visas arrived only the day before we left. As a result of the last-minute nature of the plans, our itinerary had us stop in San Francisco, Chicago, Frankfurt, and finally Jeddah. There was enough time during the layover in San Francisco for the film guys David and Justin to meet with some family for dinner outside the airport, and enough time in Chicago for all of us to get a brief driving tour of the city. Having never been to Chicago, myself, I thoroughly enjoyed this time despite a fog of exhaustion and stale clothing. But at this point, I really only look forward to a good night’s sleep.

Expedition log. March 4, 2015. KAUST, Thuwal, Saudi Arabia.

We spent the last few days recovering from our travel, meeting members of our host lab, and getting acquainted with KAUST. What a fascinating place. An entire university town, built from scratch in the middle of the desert, in just a couple of years. The buildings are vast, monolithic, even monumental. I am living in student housing that reminds me more of a palace, with three floors, a full-sized bed, and an expansive balcony that allows me to enjoy the pleasant nighttime air. It’s more than impressive. And yet, there are odd signs of the quick planning and construction. Sidewalks that go nowhere, maps with no labels, shoddy adhesives leading to missing lettering on the signage. Yes, a strange place.

Expedition log. March 5, 2015. KAUST, Thuwal, Saudi Arabia.

We got our first dives in, today. What amazing reefs! The weather was a little rough, and we got a bit seasick during the extended attempts at anchoring, but once we hit the water, it all went away. The surge made collecting samples nearly impossible, so for the most part we settled with some exploratory dives, taking in the sights and getting up to speed on the local coral types. Incredibly, although we only expected to find somewhere between 4 and 8 coral groups (out of a total of 21+ worldwide), within three dives I had spotted 12, and expect to find at least one more. Those numbers rival what I found last year in Australia, and many genera overlap! This will be a very productive trip!

Expedition log. March 9, 2015. Somewhere between Saudi Arabia and Sudan. No land in sight.

We slept on the boat in port last night and steamed out to the Farasan Banks early in the morning. Tried to get a sampling dive in before breakfast… and I’ve decided that in the future I will not again work before eating. But after the first dive and a veritable feast prepared by the crew, subsequent trips under the surface proved productive. We visited four reefs today and got a good diversity of samples from two of them. We are off to a good start!

Expedition log. March 16, 2015. KAUST, Thuwal, Saudi Arabia.

After five days of diving, a long day exploring Jeddah, and a day getting ready for the other three guys to leave, I am exhausted! I spent yesterday getting caught up with computer work, and have started to organize our metadata and photos. Finally, I have some time to share some of the incredible sights we’ve been witnessing for the last couple weeks!


What a busy couple weeks it has been. I have never been so stressed during the planning for a trip – acquiring all the necessary permissions to travel, getting visas and flights and paperwork ready – it was crazy! I hope you never get a visa to travel only a day before your flights. And since Jesse, David, and Justin only had two weeks here to get things done, we’ve been packing the days full ever since. Whew!

If you’re wondering why I’m in Saudi Arabia, here’s the answer:

Jesse samples at Al Fahal.Here’s another answer:

Acropora, Pocillopora, Echinopora.

Oh, and then there’s this:

mind=blown.The Red Sea has some of the most incredible reefs in the world. Surrounded by desert, there is little to no run-off or pollution to muck up the waters. As a result, the visibility is amazing, the colors are mind-blowing, and the corals are as happy as they could possibly be. What’s more – they’re healthy despite the fact that the water temperatures here are way higher than the bleaching thresholds at reefs anywhere else in the world.

We’re continuing the project I started last year in Australia, looking into the different microbes that interact with corals around the world, and we decided we couldn’t generalize about all corals globally unless we included the corals from this unique environment. As you can tell by my logs, we were successful in our collections. Now, I have some labwork to do – DNA extractions, bacterial culturing, and coral species identification using microscopic skeletal features. I’m sure it’ll be a blast!

 

 

Hello again (and LIRS packing notes)

Ok, so I failed miserably at maintaining this blog while I was abroad. My bad. You know how it is – the internet goes down for 3-4 days, the pre-written posts you have ready to go are put on hold while you wait for the ability to attach photos, and before you know it, you’ve fallen off the wagon, your posting schedule is irretrievable, and the distractions and activity of fieldwork have consumed your time and attention.

Or at least that’s how it happened for me.

Fortunately for us, this is an opportunity for me to look back on my trip, savoring it all over again while we digitally explore the reef while heading into the Northern Hemisphere’s cold, dark winter months. Shiver!

So let’s pick up where we left off, with a post I wrote but did not publish on August 3, about halfway through my time on Lizard Island:


Packing notes for future Lizard Island trips:

Things not to bring:

  • Socks. You’re probably thinking ‘Oh, maybe a pair or two at least!’, but no. Bring no socks. Or shoes, for that matter. Haven’t worn either for two weeks now.*
  • Jeans. The nights may get a little chilly, but sand gets in the hems and tracks into places you don’t want it. Not worth the extra weight!
  • Hammer + chisel. I need these to sample my corals, but there are plenty of tools already at the station. Since these are really heavy and weight restrictions for the flights out here are strict, this was a big waste of packing space!
  • Bread, apparently. At least not so much as you’re thinking. Everyone orders too much bread, so there’s a ton of loafs in the ‘free food’ freezer, leftover from past groups.**

Things you might forget:

  • Chocolate. And Coke. And coffee. The food orders come on a barge only every two weeks, so if you leave these off your order, you’re done for. Nobody can go two weeks without coffee, Coke, and chocolate.
  • Condiments. Yes, people also often leave these in the free food area, but they can be quickly snatched up. Who wants a sausage without mustard? And if you can bring some good ol’ American BBQ sauce with you, you’ll be a hit at the Saturday night beach barbecues. The Aussies haven’t really figured this one out, it seems… Neither have they figured out ketchup. ‘Tomato sauce’?? Pah!
  • Your handy multi-tool. Yes, you have to be careful to always put it in the checked luggage, but boy, is a good Leatherman nice to have around.
  • A hat. Seriously, why didn’t you think to bring a hat? The sun, it burns!
  • Cables. I know, I know, you already checked and double checked to make sure you had your camera and phone chargers, your computer cables, and your adapters. But you still forgot one; I guarantee it. (Last time it was your dive computer cable, and you weren’t able to download your depth and air profiles. You were very sad.)
  • Oh, and science stuff – you’ll definitely need more gloves, pipette tips, and sterile plastic baggies (Whirl-Paks) than you’re thinking. That plan you had, where you only wanted 200 samples? Forget about it! YOU WANT MORE. You can never have too many samples!***
  • And of course, always bring a towel.****

Now, I know you’ve all been dying in anticipation for the coral ID answers from the previous post. So here we are:

A. Diploastrea heliopora. This coral has a very distinctive look to it, with ribbed volcano-shaped calyces that come together in a large mound.

A. Diploastrea heliopora. This coral has a very distinctive look to it, with ribbed volcano-shaped corallites that come together in a large mound.

Acropora loripes

B. Acropora loripes. This coral has short, bushy branches with relatively large, moderately spaced corallites on the sides and tips. This is in contrast to many of its congenerics, one of which can be seen in the background of this picture. That Acropora (formosa?) coral has long branches, with smaller, closer-spaced corallites on the sides and relatively larger corallites at the branch tip.

C. Echinopora mammiformis. This coral has large, shallow, distinctively ridged calyces on a colony that forms long branches or smooth plates (not shown).

C. Echinopora mammiformis. This coral has large, shallow, distinctively ridged corallites on a colony that forms long branches or smooth plates (not shown).

D. Acropora hyacinthus. Another acroporid coral, but with a very different colony morphology. These corals form huge plates from many tiny, organized branchlets that fuse over time.

D. Acropora hyacinthus (background). Another acroporid coral, but with a very different colony morphology. These corals form huge plates from many tiny, organized branchlets that fuse over time.

E. Acropora nobilis. Yet another acroporid coral, which forms long branches and has numerous fine lateral calyces.

E. Acropora nobilis. Yet another acroporid coral, which forms long branches and has numerous fine lateral corallites. Note that this species is similar, but not identical to, the blue coral in the background of the Acropora loripes picture.

F. Symphillia radians. This coral's polyps do not form individual calyces - they are fused together within each of the colony's winding valleys. This colony morphology is not uncommon, but the corals that form it are not all closely related to one another.

F. Symphillia radians. This coral’s polyps do not form individual corallites – they are fused together within each of the colony’s winding valleys. This colony morphology is not uncommon, but the corals that form it are not all closely related to one another.

As you can see, coral morphology is very diverse. But let’s look again at how these corals are related:

In this diagram, relationships between species are displayed like a family tree. Species that are more directly connected with lines are closer relatives, so three Acropora species are closer to one another than any of them are to Diploastrea, for example.

Again, note that species that are connected with the shortest lines are the closest relatives. Would you have guessed that the branching Echinopora was more related to Symphillia and Diploastrea than to the branching Acropora?

As I spend more time on the island, I am becoming more confident in my ability to identify the corals I need for our project. I’m picking up the pace of my sampling and am really getting into the groove of island life. More updates to come!*****


*Note about shoes from the future Ryan: readjusting to the mainland was very difficult. I actually forgot to put socks and shoes on before walking onto the street from my hostel a couple of times!

**Later developments from my time on the island proved that having a ton of extra bread is not in fact a bad thing. When our barge lifeline decides two days before its scheduled arrival that, ‘Eh, we’re not coming this week!’, the denizens of LIRS begin hoarding. Lizards begin to look delicious, and fermentation experiments are attempted with coconuts.

***Future Ryan has noticed that actually, more samples=more headaches at home organizing, storing, and processing them!

****Remarkably, despite my love for Douglas Adams and general adherence to his guidelines for travel, this advice escaped me last year during my trip to Mo’orea. It’s not fun not having a towel.

*****Obviously this was a lie. Again, my bad.

 

Diversity

I’ve made it to Lizard Island Research Station, and have finally begun the actual sampling work that brought me to Australia!

The last week has been rather incredible. To get to the island, my field partner and I flew in a 5-seat airplane that held only us and the pilot. I’d never been in such a small plane, and was actually a little nervous as we walked out onto the tarmac! I was expecting the flight to be bumpy, but it was actually really smooth – even the landing was more smooth than most I’ve experienced.

Hmm... Well, maybe it was worth getting up so early

Hmm… Well, maybe it was worth getting up so early

I most certainly did not have any theme songs going through my head during the flight. Especially not Indiana Jones or Jurassic Park.

I most certainly did not have any theme songs going through my head during the flight. Especially not Indiana Jones or Jurassic Park.

Katia window

Landing at LizardSince I’ve been here, I’ve had the chance to settle in, meet people, and begin my coral-search. The station and the people in it are lovely, and the reefs are too!

So now that I’m here, I should probably explain my project a little better. I mentioned before that I was searching for the normal, or ‘good’, microbes in the corals. The problem is, different coral species have different ideas about what is good for them, and environmental conditions can change those ideas even within an individual coral colony. For example, corals that grow fast and live in bright sunlight might get plenty of sugars from their algal symbionts, and bacteria that collect or produce essential protein compounds might be important for the coral. But slightly deeper-water corals that don’t get as much sunlight for photosynthesis could have a different balance of requirements, and it may be more beneficial to associate with other kinds of bacteria. I don’t know, that just came off the top of my head – it’s just one hypothesis that might be interesting to test some time in the future!

It’s hard to test hypotheses like that right now, though, because there are confounding factors that complicate things. If we compared the bacteria in deep-water corals to those in shallow-water corals, we would probably see quite a few differences. But if the deep-water corals have other things in common (for instance, if they’re all related to one another, or grow in similar shapes), it is difficult to tell whether those differences are actually due to their unique environmental conditions, or if they’re byproducts of the other factors.

To help out with such hypothetical future studies, we plan to describe the coral microbiome in the context of the various species’ relationships to one another. If a certain group of corals has evolved to associate with bacteria that other corals don’t, we can take this into account when we ask other questions, like “Why does Species A get diseases more often in high-temperature water than Species B does?”

On a more basic level, we just want to describe something new. To my knowledge, nobody has ever before taken a peek at the microbes that associate with the coral Galaxea fascicularis. And who knows – maybe there’s some crazy bacterium in it that makes a new type of antibiotic and lives nowhere else! We’ll never know until we look. So we’re exploring the diversity of microbes in many coral species that have simply never been sampled.

My description of the project’s probably not entirely clear yet, but that’s at least a good enough introduction to it to segue into what I’ve been doing for the last week. I can’t sample from all the different groups of corals unless I know how to distinguish them from one another, so I’ve been working on my species ID. It’s not so easy. Here’s an example. Below, I have pictures (that I took this week) of 5 different coral species:

Diploastrea

A

Bushy Acropora

B

C

C

D

D

E

E

F

F

These corals are pretty common and I’ve actually chosen them because they were relatively simple to name. They are all related to one another like this:

In this diagram, relationships between species are displayed like a family tree. Species that are more directly connected with lines are closer relatives, so three Acropora species are closer to one another than any of them are to Diploastrea, for example.

Evolutionary biologists use the term clade to describe groups of organisms that are more related to one another than to any other organism. In this diagram, the three Acropora species form a clade, as does the combination of Symphillia and Echinopora, as well as the combination of SymphilliaEchinoporaand Diploastrea. The combination of Acropora nobilis and Diploastrea heliopora does not form a clade, even though they appear side by side (the location of the names does not matter, only their connections via lines). Does that make the diagram clear? I was struggling to put it into words, so let me know.

Of these corals, we would expect that Symphillia and Diploastrea would have microbial communities more similar to one other than either do to any of the Acropora species, for example. But can you guess which corals get grouped together by just looking at them? My task is to make these assessments so that we get a nice, broad sampling of coral diversity. I’ll put the answers in my next post.