OSU Press Release:  http://bit.ly/1sjfefn

MEDIA CONTACT:  David Stauth, 541-737-0787

David Williams, 541-737-3277 or david.williams@oregonstate.edu

12/10/2014

CORVALLIS, Ore. – Researchers for the first time have developed a method to track through the human body the movement of polycyclic aromatic hydrocarbons, or PAHs, as extraordinarily tiny amounts of these potential carcinogens are biologically processed and eliminated.

PAHs, which are the product of the incomplete combustion of carbon, have been a part of everyday human life since cave dwellers first roasted meat on an open fire. More sophisticated forms of exposure now range from smoked cheese to automobile air pollution, cigarettes, a ham sandwich and public drinking water. PAHs are part of the food we eat, the air we breathe and the water we drink.

However, these same compounds have gained increasing interest and scientific study in recent years due to their role as carcinogens. PAHs or PAH mixtures have been named as three of the top 10 chemicals of concern by the Agency for Toxic Substances Disease Registry.

With this new technology, scientists have an opportunity to study, in a way never before possible, potential cancer-causing compounds as they move through the human body. The findings were just published by researchers from Oregon State University and other institutions in Chemical Research in Toxicology, in work supported by the National Institute of Environmental Health Sciences (NIEHS)

The pioneering work has been the focus of Ph.D. research by Erin Madeen at Oregon State, whose studies were supported in part by an award from the Superfund Research Program at NIEHS for her work at Lawrence Livermore National Laboratory.

“We’ve proven that this technology will work, and it’s going to change the way we’re able to study carcinogenic PAHs,” said David Williams, director of the Superfund Research Program at OSU, a professor in the College of Agricultural Sciences and principal investigator with the Linus Pauling Institute.

“Almost everything we know so far about PAH toxicity is based on giving animals high doses of the compounds and then seeing what happens,” Williams said. “No one before this has ever been able to study these probable carcinogens at normal dietary levels and then see how they move through the body and are changed by various biological processes.”

The technology allowing this to happen is a new application of accelerator mass spectrometry, which as a biological tracking tool is extraordinarily more sensitive than something like radioactivity measuring. Scientists can measure PAH levels in blood down to infinitesimal ratios – comparable to a single drop of water in 4,000 Olympic swimming pools, or to a one-inch increment on a 3-billion mile measuring tape.

As a result, microdoses of a compound, even less than one might find in a normal diet or environmental exposure, can be traced as they are processed by humans. The implications are profound.

“Knowing how people metabolize PAHs may verify a number of animal and cell studies, as well as provide a better understanding of how PAHs work, identifying their mechanism or mechanisms of action,” said Bill Suk, director of the NIEHS Superfund Research Program.

One PAH compound studied in this research, dibenzo (def,p)-chrysene, is fairly potent and defined as a probable human carcinogen. It was administered to volunteers in the study in a capsule equivalent to the level of PAH found in a 5-ounce serving of smoked meat, which provided about 28 percent of the average daily dietary PAH intake. There was a fairly rapid takeup of the compound, reaching a peak metabolic level within about two hours, and then rapid elimination. The researchers were able to study not only the parent compound but also individual metabolites as it was changed.

“Part of what’s so interesting is that we’re able to administer possible carcinogens to people in scientific research and then study the results,” Williams said. “By conventional scientific ethics, that simply would not be allowed. But from a different perspective, we’re not giving these people toxins, we’re giving them dinner. That’s how much PAHs are a part of our everyday lives, and for once we’re able to study these compounds at normal levels of human exposure.”

What a scientist might see as a carcinogen, in other words, is what most of us would see as a nice grilled steak. There are many unexpected forms of PAH exposure. The compounds are found in polluted air, cigarettes, and smoked food, of course, but also in cereal grains, potatoes and at surprisingly high levels in leafy green vegetables.

“It’s clear from our research that PAHs can be toxic, but it’s also clear that there’s more to the equation than just the source of the PAH,” Williams said. “We get most of the more toxic PAHs from our food, rather than inhalation. And some fairly high doses can come from foods like leafy vegetables that we know to be healthy. That’s why we need a better understanding of what’s going on in the human body as these compounds are processed.”

The Williams-led OSU laboratory is recruiting volunteers for a follow-up study that will also employ smoked salmon as a source of a PAH mixture and relate results to an individual’s genetic makeup.

Some of the early findings from the study actually back up previous research fairly well, Williams said, which was done with high-dose studies in laboratory animals. It’s possible, he said, that exposure to dietary PAHs over a lifetime may turn out to be less of a health risk that previously believed at normal levels of exposure, but more work will need to be done with this technology before such conclusions could be reached.

Collaborators on the study were from the Pacific Northwest National Laboratory, Lawrence Livermore National Laboratory, and the OSU Environmental Health Sciences Center.

“Further development and application of this technology could have a major impact in the arena of human environmental health,” the researchers wrote in their conclusion.

Continue reading

Assessing Contaminants in Subsistence-Harvested Shellfish
with the Swinomish and Samish Indian Tribes

By Blair Paulik (Project 4 Trainee) and Diana Rohlman (CEC Program Coordinator)

On August 20, 2014, Researchers from the Oregon State University (OSU) Superfund Research Program (SRP) have collaborated with two northwestern Tribes, the Swinomish and the Samish, to analyze environmental samples for contaminants. The team worked with Dr. Jamie Donatuto, the Environmental Health Analyst for the Swinomish Tribe, and Christine Woodward, the Director of the Department of Natural Resources for the Samish Tribe, to identify Tribal concerns regarding pollution of butter clams (Saxidomus gigantean).

Shellfish beds in Fidalgo Bay are underused, given concerns regarding contamination from the two nearby oil refineries. The last sampling event in 2002 identified increased levels of toxics in butter clams at sites within Fidalgo Bay.

(August 10-12, 2014) OSU SRP researchers meet with Bill Bailey (far left) and Rosie James (second from left, front) of the Samish Indian Tribe to collect butter clams and place passive pore-water samplers.
(August 10-12, 2014) OSU SRP researchers meet with Bill Bailey (far left) and Rosie James (second from left, front) of the Samish Indian Tribe to collect butter clams and place passive pore-water samplers.

To continue this research, SRP visited four sites on Swinomish and Samish beaches within the Fidalgo and Similk Bay areas, collecting butter clams and deploying passive pore-water samplers in the sediment.

In addition to identifying what contaminants may be present in the butter clams, the research team also aims to identify a new testing method to reduce the amount of resident shellfish that are collected when environmental sampling is needed. The goal is to predict clam contamination using passive pore-water samplers.

If successful, this would enable researchers to determine shellfish contamination by putting out passive samplers instead of collecting clams. Using passive samplers is cheaper, faster, and less harmful to the local ecosystem than collecting resident organisms.

This work aims to provide important information regarding risk from consumption of butter clams, new methods for monitoring baselines trends of contaminants, and may inform novel sampling methods useful to Tribes and Superfund researchers around the country.

 

IMG_1001

(Above) A butter clam (Saxidomus gigantea) collected by the research team. At each site researchers collected five clams.

Where each clam was found, a passive pore-water sampler was placed (below).

IMG_0882
After four weeks, the samplers will be retrieved and analyzed. The chemical profile from the butter clam will be compared to the chemical profile of the passive sampler.

This work was conducted under Material and Data Sharing Agreements with both the Swinomish and Samish Tribes. All data generated from this study belongs to the Tribes. The Tribes must approve any use of the data or samples.

For more information:

IMG_0221
The OSU SRP – DOSE partnership in 2011 in front of a traditional smoking tipi includes SRP trainees Andres Cardenas and Oleksii Motorykin, and CEC Co-leaders Dr. Barbara Harper and Stuart Harris.

The Department of Science and Engineering (DOSE) of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) is a partner with our Superfund Research Program (SRP) Community Engagement Core (Core E).

In June 2014, DOSE recruited nine Tribal members to help with a study that would measure how people metabolize and eliminate polycyclic aromatic hydrocarbons (PAHs) that can attach to food when it is smoked.

PAHs are produced by burning wood and other materials. Salmon, a first food, is important to the subsistence of Native Americans living in the Pacific Northwest. The salmon run in spring and fall. Smoking salmon is one of the traditional ways to preserve this seasonally abundant food and make it available year round.

The study team first conducted a community educational forum for study volunteers that described the purpose of the study and get informed consent. Each participant was asked to refrain from eating any foods containing PAHs for two days. Then they were asked to eat a small serving of traditionally smoked salmon.  After eating the salmon they provided urine samples to help researchers understand how the PAH residues produced during smoking events are processed by the body.

SRP Trainee Oleksii Motorykin (Project 5) is involved in this study and is working with CORE E and DOSE Scientists to interpret the data.

The Community Engagement Core has a wealth of resources shared on the web site related to working with Tribes. Be sure to check it out!

THE POLLUTION INSIDE US
Toxicologists examine the chemicals of modern life.
By: Peg Herring, Oregon’s Agricultural Progress

Forty years ago, chemical pollution was the stuff that spewed from tailpipes, smokestacks, and sewers. Rivers burned, fish died, and forests withered under acid rain until Congress passed strict laws to curb the flood of manmade chemicals pouring into our waterways and atmosphere.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

However, 40 years ago there was little consideration of the chemicals that we were pouring into our bodies. The chemicals we use to sanitize our hands, package our foods, and keep our beds from going up in flames have seeped into our bodies in ways that were unimaginable a generation ago. Today, we are marinating in antibacterials, hormone disruptors, and flame retardants.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

“There are more than 80,000 man-made chemicals in existence today, and an estimated 2,000 new chemicals are introduced each year,” said Craig Marcus, a toxicologist at Oregon State University. “We encounter thousands of them every day, in food, kitchenware, furniture, household cleaners, and personal care products. And very few of them have been adequately tested for safety.” Continue reading