Robert Tanguay (Leader, Project 3, Director, Sinnhuber Aquatic Research Lab) traveled to California on April 29-20 for the Norcal SOT Spring Symposium . His presentation “Rapid In Vivo Assessment of Bioactivity in Zebrafish: High Content Data for Predictive Toxicology” was well received by scientists from the California Dept. of Pesticide Regulation, California EPA, and many others participating via the webcast.
This is our third year tweeting in support of EPA’s Air Quality Awareness Week. For the last two years we used the hashtag #healthyair and I was able to gather analytics. This year we are using the same hashtags as the EPA in hopes to reach a broader audience: #AQAW and #airquality
Picnic Day is an annual open house event held in April at UC Davis. It typically draws more than 50,000 visitors to the campus to learn about the research and engage in family fun activities.
We appreciated the invitation from the UC Davis Superfund Research Center to our Trainees to come down and participate with them in outreach. Dr. Craig Marcus, Training Core Leader, traveled with two trainees, Erin Madeen (Project 1) and Andrea Knecht (Project 3).
UC Davis invited us to display posters about our Center within their display area. Having the OSU SRP there was great, because UC Davis could direct their attention to our work to learn specifically about PAHs; how people are exposed and how they affect human and environmental health.
Besides research posters, the booth had over 125 children engaged in a ‘toxin hunt’ activity. The game was an excellent way for them to understand how SRP research can impact their health. The parents became very interested in the toxins that are being studied with the Superfund Research Program.
Picnic Day was a great opportunity for Erin and Andrea to gain more experience in outreach by sharing posters with attendees and researchers. Dr. Marcus and the trainees also had opportunities to interact individually with the leadership and project leaders of several projects in the UC Davis Superfund Center to make additional connections and establish new collaborations. We look forward to hosting UC Davis trainees for our Research Day and other exchange opportunities.
As the environmental health science field strives to better understand the complexity of personal chemical exposures, NIEHS-funded researchers at the Oregon State University (OSU) Superfund Research Program (SRP) led by Kim Anderson, Ph.D., have developed a simple wristband and extraction method that can test exposure to 1,200 chemicals.
By Erin Madeen, Ph.D. candidate and Project 1 Trainee
Using new technology at Lawrence Livermore National Laboratory (LLNL), Oregon State University researchers are able to perform a controlled study of the human metabolism of environmental contaminate PAHs for the first time.
The Williams Laboratory has studied PAHs(polycyclic aromatic hydrocarbons) for over a decade, traditionally relying on animal and in vitro models of metabolism and toxicity. PAHs are produced by the burning of carbon-containing materials, for example forest fires, charcoal grilling, and engine combustion. After production, PAHs cling to foods such as vegetables, cereal grains, or smoked meats. Some of these compounds cause cancer at high doses in animal models.
As a graduate student in the Williams Lab, one of my projects is to relate PAH data to human health. With our partners at LLNL, a sensitive tool known as an AMS (accelerator mass spectrometer) is used to detect very small doses of PAHs in urine or blood plasma. We gave a model PAH called DBC [Dibenzo (def,p) chrysene] to human volunteers in doses less than what can be found in a charbroiled burger. This research has not been possible until now because of potential toxicity risks. Traditional non-AMS methods need a larger dose of DBC which could pose too high of a risk to study participants.
With the support of LLNL staff and the OSU Superfund Research Program, I received a K.C. Donnelly Externship Supplement through the NIEHS Superfund Research Program. This award supported my travel to LLNL for this project. My experience at LLNL greatly solidified my understanding of and appreciation for AMS. Maintaining and continuously developing unique instrumentation, such as AMS, requires a highly specialized, dedicated, and flexible team. The environment of a national laboratory is different from that of university research. Most notably this difference is in the concentration of specialists in a particular field and the team approach to problem solving. It was humbling to observe the amount of time, resources, and effort that the LLNL AMS staff dedicated to training and to progress on our DBC project. This externship allowed me to experience being part of the AMS team and to process my own samples, providing valuable insight that will help guide further work on our projects.
Accelerator Mass Spectrometry (AMS) is an instrument traditionally used for carbon dating. It has been modified to detect stable isotopes in biological samples. The AMS at LLNL is unique because it is able to use liquid samples. The liquid biological samples are separated according to the changes the body makes to DBC, known as DBC metabolites. The carbon isotope added to the DBC chemical structure was used to identify several different metabolites in human urine and plasma. This project is ongoing as we continue to develop a profile of the human metabolism of DBC over time.