Fire and Drought and El Niño, Oh My!

Oregon Sea Grant Sponsored Study Looks at Improving Communication About Environmental Conditions Between Scientific Experts and Oregon’s Natural Resource Managers

It was the beginning of 2016. Unusually warm seawater named “The Blob” collected in the North-East Pacific Ocean. A massive harmful algal bloom formed in Oregon’s coastal waters. High amounts of a marine biotoxin called domoic acid resulted in closures of the recreational razor clam fishery. Almost 5,000 people along the North Coast (where the majority of recreational razor clamming occurs) stayed home because of this closure. “…You can imagine the lost economic opportunities,” said the Oregon Department of Fish and Wildlife Shellfish Program Manager. “People don’t come out and rent vacation homes or they don’t go camping, they’re not eating in the restaurants, state parks are not filled; all those kinds of things occur because we’ve made this decision to not allow harvest.”

This is just one example of how changing ocean conditions are affecting Oregon’s coastal communities. Now, researchers at Oregon State University are evaluating a National Oceanic and Atmospheric Administration (NOAA) webinar called NOAA West Watch. Specifically, they are seeing if the webinar can be changed to communicate these extreme environmental conditions to Oregon’s natural resource managers. Currently, NOAA West Watch communicates information about abnormal environmental conditions to NOAA scientists.

Specifically, the research team is including Oregon’s natural resource managers in this webinar to improve regional coordination and communication. This could lead to a more ecosystem-based view for problem solving. To do this, the researchers are inviting a variety of Oregon resource managers, local scientists, and non-governmental organizations to watch the webinars and provide feedback on how to improve the webinar for a more manager-friendly audience.

Why do we need a more “ecosystem-based” view and manager-friendly audience, you may ask? Historically, much of our natural resource science and management occurred on a sector-basis. For example, scientists who studied fisheries often didn’t talk to scientists who studied estuaries. The same often occurred with management, as agencies have specific jobs and management roles in the environment. Managers had to find information across many subjects and determine what was important for their decision-making. Over the past couple of decades, management has shifted to an ecosystem-based management (EBM) framework that considers all ecological and human connections within and to the environment. Despite this mentality shift, natural resource science and management is still highly disjointed.

Strengthening connections between natural resource science and management is increasingly important as our coastal ocean changes. Accordingly, both scientists and managers will have to anticipate and plan for changes to our environment and resources. Evaluating NOAA West Watch can determine if this communication tool can support EBM by including a variety of scientists and managers in a setting that is responsive and adaptive to environmental changes on the West Coast.

Taking A Deep (Ocean) Dive into EBM

To determine if NOAA West Watch is a useful tool for supporting EBM, researchers are evaluating the following:

  1. the most useful spatial scale for information;
  2. if it can connect human and natural systems;
  3. if it can serve as a way for discussing competing environmental values and uses; and
  4. if it can be flexible to changes in the natural and human environments.

On a cold, windy day along the Oregon Coast, it can be easy to want to head indoors and forget about the rest of the world. But as a larger ecosystem, Oregon’s coast is connected not only to the surrounding ocean environment, but also to land. Additionally, the coast serves as a place where humans make connections, including providing opportunities for managers and scientists to work together. Scientists and managers are tasked with effectively studying and managing this diverse, changing ecosystem. To do so, they need to understand ecological and human connections that are occurring in the coastal region. “Sometimes we get so focused on what is happening here that we might fail to look at connections that are happening in other places,” said one Oregon resource manager who participated in the study.

The Oregon State researchers think NOAA West Watch may be able to explore these connections. In particular, the evaluation seeks to determine the most useful spatial scale for the webinar’s information. By considering the West Coast as an ecosystem, scientists can communicate changes in large-scale environmental conditions. Managers would then respond to those changes that can impact local environments and communities. An estuary manager who participated in the study shared, “Thinking about those kinds of bigger-picture issues is always helpful. It takes the blinders off so you’re not just looking at your little estuary; there’s these bigger conditions and factors that are influencing what you’re seeing.”

Additionally, the researchers are seeing if NOAA West Watch can help with the reporting of Oregon’s local marine environmental impacts. As community representatives, Oregon’s managers would speak for a local perspective in global environmental changes. Managers can share community environmental observations with NOAA employees during NOAA West Watch. NOAA can then include these observations in future science and policy. Initial results indicate that NOAA West Watch can help communicate human connections in the larger western regional ecosystem.

 

 Large waves hit Haystack Rock in Pacific City, Oregon Crab pots sit on a fishing dock in Oregon.
Examples of unusual environmental conditions and their impacts to Oregon that were presented in NOAA West Watch. Left, large offshore storms created record high waves along the Oregon coast in January of 2018 that left one dead. Right, delays to commercial Dungeness crabbing along the West Coast resulted in $400 million of direct impacts in January of 2017.

 

Furthermore, evaluators are determining if NOAA West Watch can bring together a wide range of science and management fields to build communication among competing coastal users. Given the ocean’s limited space, stakeholders need to discuss which ocean uses they prefer. However, it can be difficult to explore costs and benefits of certain uses if information is distributed across natural resource subjects. This research seeks to represent a variety of Oregon’s coastal science and management interest in NOAA West Watch webinars. Broad representation may help promote individual connections to build into institutional partnerships.

Compared to land environments, the ocean is generally not as well understood. Therefore, Oregon resource managers have to be flexible to changes in scientific progress. NOAA West Watch may help improve understanding by quickly combining and communicating environmental condition information; Oregon’s managers could then use that information for decision-making. Frequent webinars may help managers monitor changing physical conditions used to anticipate biological events. For example, managers can keep an eye on conditions that may lead to harmful algal blooms and shellfish fishery closures.

January 2017 clorophyll off in Oregon's coastal ocean. March 2017 chlorophyll off Oregon's coast.
NOAA West Watch webinars present environmental condition information to follow changes in the coastal ocean, such as these maps of chlorophyll concentration which can indicate harmful algal blooms. On the left, January 2017 conditions show a low number of phytoplankton, our marine plants. However, two months later (right), chlorophyll concentrations increase, indicating that a harmful algal bloom may be developing.

 

Keeping Pace with Oregon’s Changing Environment

With a changing climate, Oregon is expected to have increased droughts, changes in fish distribution, and increased wildfires. Natural resource scientists and managers have to predict and plan for these types of changes. Oregonians have recreational, economic, cultural, or personal interests in ensuring our resources are managed sustainably for long-term public use.

Ecosystem-based management is a framework that managers work under, and scientists can inform. Better communication can help managers understand our changing environment. Results from this NOAA West Watch evaluation suggest that this communication tool can be changed to fit the needs of an EBM management system. It can connect scientists and Oregon’s natural resource managers to promote collaboration and co-management.

As our coastal environment changes, what marine resources are you concerned about managing? [Comment below!]

  

 

Closing Remarks

It’s hard to believe that this will be my last blogpost as a Malouf Scholar. The past year has been amazing, and would not have been possible without the support of Oregon Sea Grant. I have completed my graduate research, compiled the findings, and graduated from Portland State University this summer. Through my research I proposed and tested a method to overcome institutional barriers and build cross-sector communication capacity between decision makers and scientists that mutually benefits those involved while promoting their respective roles in society. Preserving and protecting critical coastal and marine resources becomes ever more important as climatic, land use, and socio-demographic shifts occur. Doing so will require effective and efficient policy and management schemes that include the best available science, i.e., evidence-based decisions. My research engaged decision makers and scientists to begin a collaborative approach to extract, design, and integrate relevant information into evidence-based policy and management practices. This integrated approach maximizes use of information to prevent, and in some cases reverse, the negative effects of human practices.
Though, I want to emphasize that this work has been just the start in a long and sustained process. Further workshops, dedicated interactions, and the stimulus from funding agencies should all be used to sustain the connection between decision-makers and scientists. A clear linkage between decision makers and scientists, electronic networks, decision support tools, and ecological models can all support long-term engagement as well.
Increasing communication between scientists and decision makers results in an impressive return on monetary investments, generating greater value for research dollars spent by developing more effective research. By enhancing social capital through communication, decision makers can better protect natural capital. Since there are real economic and ecological costs associated with continued consumption of finite resources, the interactions established during my research (and ideally beyond) should be a high priority for decision-makers and scientists alike.
While I have recently accepted a Natural Resource Policy Fellowship with Oregon Sea Grant at the Governor’s Natural Resources Office (and my attention will naturally shift to this program’s requirements), I intend to continue to follow-up with the work I have done with evidence-based decision making. Fortunately, there is a strong desire in the Governor’s Natural Resources Office to do just that! I feel very fortunate to have the opportunity to continue these efforts, and embrace new ones in my role, as well as continue to work with the amazing caliber of people at Oregon Sea Grant. As I move on to this next stage, and pass along the torch to the next cohort of Malouf Scholars, I look forward to reading about what fascinating and promising research they conduct! Stay tuned everyone!