Tag Archives: graduate school

Infection Interruption: Identifying Compounds that Disrupt HIV

Know the enemy

Comparing microbial extracts with Dr. Sandra Loesgen.

The Human Immunodeficiency Virus, or HIV, is the virus that leads to Acquired Immunodeficiency Syndrome (AIDS). Most of our listeners have likely heard about HIV/AIDS because it has been reported in the news since the 1980s, but our listeners might not be familiar with the virus’s biology and treatments that target the virus.

  • HIV follows an infection cycle with these main stages:
    • Attachment – the virus binds to a host cell
    • Fusion – the viral wall fuses with the membrane of the host cell and genetic material from the virus enters the host cell
    • Reverse transcription – RNA from the virus is converted into DNA via viral enzymes
    • Integration – viral DNA joins the genome of the host cell
    • Reproduction – the viral DNA hijacks the host cell activity to produce more viruses and the cycle continues
  • Drug treatments target different stages in the HIV infection cycle to slow down infection
  • However, HIV has adapted to allow mistakes to occur during the reverse transcription stage such that spontaneous mutations change the virus within the host individual, and the virus becomes tolerant to drug treatments over time.

Faulty Machinery

Due to the highly mutable nature of HIV, a constant supply of new drug treatments are necessary to fend off resistance and treat infection. Our guest this week on Inspiration Dissemination, Ross Overacker a PhD candidate in Organic Chemistry, is screening a library of natural and synthetic compounds for their antiviral activity and effectiveness at disrupting HIV. Ross works in a Natural Products Lab under the direction of Dr. Sandra Loesgen. There, Ross and his lab mates (some of whom were on the show recently [1] [2]) test libraries of compounds they have extracted from fungi and bacteria for a range of therapeutic applications. Ross is currently completing his analysis of a synthetic compound that shows promise for interrupting the HIV infection cycle.

“Uncle Ross” giving a tour of the lab stopping to show off the liquid nitrogen.

Working in Lab with liquid nitrogen.

 

 

 

 

 

 

 

Havin’ a blast

Chemistry Club at Washington State University (WSU) initially turned Ross onto chemistry. The club participated in education outreach by presenting chemistry demonstrations at local high schools and club events. Ross and other students would demonstrate exciting chemistry demos such as filling hydrogen balloons with salt compounds resulting in colorful explosions piquing the interest of students and community members alike. Ross originally made a name in

Collecting Winter Chanterelles in the Pacific Northwest.

WSU’s chemistry club, eventually becoming the president, by showing off a “flaming snowball” and tossing it from hand to hand—don’t worry he will explain this on air. For Ross, chemistry is a complicated puzzle that once you work out, all of the pieces fall into place. After a few undergraduate research projects, Ross decided that he wanted to continue research by pursing a PhD in Organic Chemistry at Oregon State University.

 

 

Tune in this Sunday October 7th at 7 PM to hear from Ross about his research and path to graduate school. Not a local listener? Stream the show live or catch this episode on our podcast.

Learning without a brain

Instructions for how to win a soccer game:

Score more goals than your opponent.

Sounds simple, but these instructions don’t begin to explain the complexity of soccer and are useless without knowledge of the rules of soccer or how a “goal” is “scored.” Cataloging the numerous variables and situations to win at soccer is impossible and even having all that information will not guarantee a win. Soccer takes teamwork and practice.

Researchers in robotics are trying to figure out how to make a robot learn behaviors in games such as soccer, which require collaborative and/or competitive behaviors.

How then would you teach a group of robots to play soccer? Robots don’t have “bodies,” and instructions based on human body movement are irrelevant. Robots can’t watch a game and later try some fancy footwork. Robots can’t understand English unless they are designed to. How would the robots communicate with each other on the field? If a robot team did win a soccer game, how would they know?

Multiple robot systems are already a reality in automated warehouses.

Although this is merely an illustrative example, these are the types of challenges encountered by folks working to design robots to accomplish specific tasks. The main tool for teaching a robot to do anything is machine learning. With machine learning, a roboticist can give a robot limited instructions for a task, the robot can attempt a task many times, and the roboticist can reward the robot when the task is performed successfully. This allows the robot to learn how to successfully accomplish the task and use that experience to further improve. In our soccer example, the robot team is rewarded when they score a goal, and they can get better at scoring goals and winning games.

Programming machines to automatically learn collaborative skills is very hard because the outcome depends on not only what one robot did, but what all other robots did; thus it is hard to learn who contributed the most and in what way.

Our guest this week, Yathartha Tuladhar, a PhD student studying Robotics in the College of Engineering, is focused on improving multi-robot coordination. He is investigating both how to effectively reward robots and how robot-to-robot communication can increase success. Fun fact: robots don’t use human language communication. Roboticists define a limited vocabulary of numbers or letters that can become words and allow the robots to learn their own language. Not even the roboticist will be able to decode the communication!

 

Human-Robot collaborative teams will play a crucial role in the future of search and rescue.

Yathartha is from Nepal and became interested in electrical engineering as a career that would aid infrastructure development in his country. After getting a scholarship to study electrical engineering in the US at University of Texas Arlington, he learned that electrical engineering is more than developing networks and helping buildings run on electricity. He found electrical engineering is about discovery, creation, trial, and error. Ultimately, it was an experience volunteering in a robotics lab as an undergraduate that led him to where he is today.

Tune in on Sunday at 7pm and be ready for some mind-blowing information about robots and machine learning. Listen locally to 88.7FM, stream the show live, or check out our podcast.

GROWing Healthy Kids and Communities

Physical activity has many benefits for health and wellness. Physical activity can help us control our weight, reduce our risk of diseases including many cancers and type 2 diabetes, help to strengthen our bones and muscles, and improve our mental health. Yet despite the benefits, many don’t get the recommended amount of physical activity. Our guest this week, Evan Hilberg from the College of Public Health and Human Sciences and the Department of Kinesiology, is investigating factors that influence physical activity of children in rural communities. Research focused on physical activity in children disproportionally centers around children in urban communities. Children in rural communities may have different limitations to physical activity. For example, rural children are more likely to take the bus to school instead of walking and commutes may take up to two hours each way. This leaves little time for physical activity outside of school hours. With his advisors, John Schuna and Kathy Gunter, Evan is analyzing data collected as part of the Generating Rural Options for Weight- Healthy Kids and Communities (GROW HKC) to better understand when children are active during the school day and factors that might limit their physical activity.

Recess and Wellness

Evan taking blood samples for cholesterol and glucose testing at a Community Wellness Fair.

One area of interest for Evan and the GROW HKC project are the variables that may predict changes in Body Mass Index (BMI) over a three-year period. Through this longitudinal study that involves over 1000 rural Oregon elementary school children, Evan will identify correlates of BMI change such as physical activity levels, age, sex, teacher, and school. Additionally, Evan is analyzing data that will hopefully provide more insight into specifically what times during the school day children are active. By obtaining a classroom schedule from teachers and measuring activity with accelerometers and pedometers, Evan can infer if children are physically active during recess, P.E., classroom activity breaks, or other times during the school day. Finally, Evan’s data will examine the reliability of different objective measures of physical activity, such as pedometers and accelerometers. The ability to compare outputs from different devices is limited by changes in device hardware and software, as well as the ways in which data is processed within those devices. The examination of these devices may inform procedure for future physical activity research for children and adults to help comparability across different devices and different studies.

A School of Thought

A clear understanding of the factors effecting physical activity in rural school children will aid in structuring the school day to maximize each child’s opportunity to be physically active. Data generated through GROW HKC my reveal patterns that younger children are more active during unstructured play during recess, whereas older children prefer sports-focused activity in P.E.. This type of research could inform recommendations for state-mandated physical activity at schools such that school day structure and physical activity opportunities are tailored to the diverse needs of kids in rural communities.

Full Circle

Evan grew up as an active kid and selected a college where he could play baseball. He landed at Linfield College in McMinnville, Oregon where his interest in Exercise Science grew through volunteering in community health outreach and research with his advisor, Janet Peterson. Evan learned that his education went beyond the classroom through his interactions with the community. Evan decided to pursue graduate school and earned a Master’s degree in Exercise Physiology from Eastern Washington University. During his Master’s, Evan gained more experience with community and public health research as an AmeriCorps employee with Let’s Move, Cheney”, a local coalition inspired by Michelle Obama’s national campaign. Thereafter, Evan volunteered with the GROW HKC project, and applied to graduate school at Oregon State. Since beginning his doctoral studies with a concentration in physical activity and public health, Evan has completed a Master’s in Public Health in Biostatistics and maintains a full-time job as a Medical Policy Research Analyst with Cambia Health Solutions.

Tune in to 88.7 FM KBVR Corvallis this Sunday November, 12 at 7 pm to hear more about Evan’s research and background in Exercise Science. Click here to stream the show live.

You can download Evan’s iTunes Podcast Episode!

Evan at the California-Oregon border on a self-supported bike trip to San Francisco down the coast.

A very Hungry Caterpillar, a very Tenacious Scientist

Tyria jacobaeae (cinnabar moth) caterpillars chowing down on Senecio triangularis at Marys Peak summer 2014

Tyria jacobaeae (cinnabar moth) adult Photographer: Eric Coombs

 

 

 

 

 

 

 

 

 

Our guest this week is Madison Rodman who recently finished her Master’s degree in Botany and Plant Pathology. Growing up as the daughter of crime lab scientist and an ecologist in North Dakota, Madison told us that there was not a singular moment when she knew she wanted to do science; she always loved the outdoors. It is no surprise that Madison is a go-getter and a very organized scientist herself, but her science story is less than typical. Madison’s first research experience involved hiking through the jungles of Thailand surveying for tigers! While wildly adventurous, this trip taught Madison that field work is not all rainbows and tiger stripes, but that there are venomous snakes in the jungle and tigers are good at hiding. What drew Madison to this field trip was the opportunity to see the organism in its habitat, but she also realized that all the lovely jungle plants were hiding in plain sight and waiting to be surveyed as well.

Madison Rodman poses with her research organism Senecio triangularis summer 2016

Upon returning to Minneapolis to continue her undergraduate studies at the University of Minnesota, Madison focused on Plant Biology and realized that plant-insect interactions were something that interested her. She applied for a Research Experience for Undergraduates (REU) at the University of Michigan, and spent the summer investigating the impact of atmospheric CO2 levels on plant chemistry and how changes in leaf defense chemistry affects herbivores. This was the pièce de résistance of a science project combining: whole organism science, plant-insect interactions, and climate change biology. Things were really coming together for Madison, and she knew she wanted to go on to graduate school and continue studying plant-insect interactions.

Manipulative experiment in action near Big Lake summer 2015

 

She did just that, and much much more, at Oregon State. Madison defended her Master’s thesis this winter, through which she studied the risk of a biocontrol agent, the cinnabar moth, on a native plant, Senecio triangularis, or arrow-leaf groundsel. These biocontrol caterpillars, will chomp the European tansy ragwort, an invasive weed, to the ground and look pretty cute doing it, but in some parts of Oregon they have recently switched to feeding on the native arrow-leaf groundsel. The good news: the tansy buffet is in low supply; the bad news: arrow-leaf groundsel is on the menu. How risky is the annual feeding of cinnabar moth caterpillars on arrow-leaf groundsel populations? Can caterpillar feeding have negative effects on the reproduction and survival of arrow-leaf groundsel? Both the arrow-leaf groundsel and the cinnabar moth are here to stay, but this native plant might be in trouble as annual temperatures continue to rise. You’ll have to tune in to hear more about the cinnabar moth and Madison’s field work in the high Cascades and Coast Range of Oregon. We promise it is all rainbows and moths…

Madison in her native habitat near Mount Hood summer 2016

Also at Oregon State, Madison has also been able to practice and boost her teaching skills through the Graduate Certificate in College and University Teaching (GCCUT) program. She has always loved communicating science, from being an undergraduate teaching assistant at U of MN to intern at Wind Cave National Park. Madison hopes to stay involved in teaching and community outreach after grad school when she relocates to Minnesota. We’re so excited to present her perspective on graduate school and share her science story.

Tune in to KBVR Corvallis 88.7FM this Sunday February, 5 at 7 pm PST to hear Madison’s story and learn about plant-insect interactions. You will not want to miss her take on graduate school, biocontrol, and beyond.

Not a local listener? Don’t fret, you can stream this episode live at www.kbvr.com/listen.

Inspiration Dissemination is happy to announce its addition to the KBVR archive as a podcast! Listen to this episode whenever and where ever you have internet access. Link TBA.