Testing Arctic climate models: how much detail can we capture?

Many of us have heard that as a consequence of climate change, Arctic sea ice is rapidly decreasing and that the Arctic is warming twice as fast as the rest of the planet. It’s a complicated system that we don’t understand very well: few people live in the Arctic, and the data from limited study sites may not be representative of the region as a whole. How will Arctic climates change at different timescales in the coming years? What could this mean for coastal Arctic communities that rely on sea ice for preventing erosion or fishing in deep waters? How will navigation and shipping routes change? And in addition, how does a changing Arctic affect climates at lower latitudes?

Visualization of winter sea ice in the Arctic by Cindy Starr, courtesy the NASA Scientific Visualization Studio.

Daniel Watkins is a fourth-year PhD student of Atmospheric Science in OSU’s College of Earth, Ocean, and Atmospheric Science (CEOAS). Working with Dr. Jennifer Hutchings, he is analyzing climate model experiments in order to find answers to these questions. An important step in this is to evaluate the quality of climate simulations, which he does by matching up model output with real-life observations of temperature, sea ice, and cloud cover. Climate scientists have many models that predict how these factors will change in the Arctic over the next several decades. No model can take every detail into account, so how accurate can its predictions be? For example, the frigid Arctic temperatures can cause water molecules in low-lying clouds to trap heat in a very different way than they do here in the Pacific Northwest. Is it necessary to take a detail like this into account?

In cold regions like the Arctic where surface ocean temperatures are much warmer than the overlying atmosphere, the ocean transfers a lot of heat into the air. Sea ice insulates the ocean and prevents heat transfer to the atmosphere, so when there is less ice, a cycle of increasing warming can perpetuate. Because water has a higher heat capacity than air, the ocean doesn’t cool off as much as the atmosphere warms. This is particularly bad news for the Arctic, where layers of cold, dense air often sit beneath warmer air in a phenomenon called a temperature inversion. Effectively, this prevents heat from moving on to higher layers of the atmosphere, so it stays low where it could melt more sea ice. This contributes to a phenomenon called Arctic Amplification, where for every degree of warming seen in the global average, the Arctic surface temperature warms by about four degrees. While it may be tempting to build a model containing every cloud in the atmosphere or chunk of ice in the Arctic Ocean, these could make it too computationally difficult to solve. Daniel has to simplify, because his goal is not to provide a weather forecast, but to evaluate how well models match observed measurements of Arctic temperatures.

Daniel by the Skogafoss in Iceland in June 2018. If you’re lucky (and he was), you can see sea ice, turbulent boundary layer cloud layers, and the Greenland ice sheet when you fly between Portland and Iceland.

To accomplish this, Daniel uses model output data, re-analyzed data that fits models to observations, and temperature measurements from weather balloons. These sources contain terabytes of data, so he has written code and contributed to open-source software that subsets and analyzes these datasets in a meaningful way. Daniel then uses the re-analyzed and weather balloon data to test whether the model reproduces various features of the Arctic climate, such as widespread temperature inversions. Working with this vast amount of information requires some mathematical prowess. While studying as an undergraduate at BYU Idaho, Daniel decided to major in math when he heard a professor describe mathematics as “a toolbox to solve science problems with”. An internship at Los Alamos National Laboratory later suggested geophysical modeling as a worthy task to tackle.

When he’s not modeling the future of the Arctic, Daniel spends time with his children, Milo and Owen, and plays in a rock band he formed with his wife, Suzanne, called Mons La Hire. Daniel is also a DJ on KBVR and is excited to become the newest host of Inspiration Dissemination. To hear more, tune in on Sunday, December 2nd at 7 PM on KBVR 88.7 FM, live stream the show, or catch our podcast!

Finding hope in invaded spaces

While Senecio triangularis, native to Western Oregon, was not the intended hostplant of the introduced cinnabar moth, it has been supporting moth populations for decades.

Invaded places are not broken spaces

“It was some of the hardest work I have done,” says this week’s guest, Katarina Lunde recounting her arduous work interning with the Nature Consortium in the Duwamish region of Seattle. Katarina was passionate about her work in conservation ecology, spending countless hours leading groups of volunteers in restoration projects and educating the community about the restoration sites. But it was somewhere in the bone-chilling cold tearing out invasive species like the Himalayan blackberry and English ivy that Katarina had a shift in perception – these spaces were not broken. Katarina realized that informed decisions could tip the scales in the right direction in these vulnerable spaces. There was still hope to be found in the midst of these invasions. The desire to study ecology more deeply led Katarina to pursue a master’s degree in plant ecology with Dr. Peter McEvoy in the Department of Botany and Plant Pathology at Oregon State University.

Learning to tip the scales

In the 1920s, tansy ragwort (Senecio jacobaea) was first observed in the Portland, Oregon. This introduced, noxious weed, was causing severe liver failure and even death for grazing cattle and deer. The major economic implications on livestock prompted the Oregon Department of Agriculture to intervene. By the 1960s, the cinnabar moth (Tyria jacobaeae) was released as one of three insect biological control agents. The role of the cinnabar moth was to reduce tansy ragwort populations by depositing their eggs on the underside of the leaf and allowing newly hatched caterpillars to feed on and eventually kill the plant. However, there was an unintended consequence. When these very hungry caterpillars were released in the mountainous Cascade region, they found that a closely-related native plant species, arrowleaf groundsel (Senecio triangularis), was also quite appetizing.

Cinnabar caterpillars strip late-season Senecio triangularis stems of foliage. Luckily, most plants will have set seed and stored energy before the caterpillars reach peak feeding stages.

Despite this outcome, the release of the cinnabar moth has been largely viewed as a success, even though this biocontrol agent likely would not have been released under current standards. This system does then provide an ideal model system to identify long-term risks and benefits of biocontrol use. When it comes to biological invasions, the cost of inaction is often too high, so what are the risks and benefits?

Katarina Lunde installs experimental plots at a field site with the help of fellow lab members. She measured Senecio triangularis seedling recruitment under seed addition/reduction scenarios to assess potential impacts of seed loss due to cinnabar moth herbivory.

By studying seed loss and plant recruitment – do more seeds equal more plants? – on Marys Peak in Oregon’s coastal range, Katarina has been able to assess the risk that cinnabar moths pose on native plant survival. The answers are nuanced, of course, as this deals with a dynamic natural system, but Katarina’s work is allowing for better questions to be asked that will in turn better inform decision making regarding biological controls.

Finding the perfect fit

Katarina studied plants and plant systematics at Oberlin College where she obtained a bachelor’s degree in biology and creative writing. With student loans to pay off and a desire to find a career that fit her unique abilities and interests, Katarina spent six years working in fine dining and exploring future career paths in Seattle, WA, volunteering with various non-profits. Through her restoration program internship with the Nature Consortium, she was finally able to hone-in on the field of plant ecology. Katarina is currently nearing the end of her master’s program and seeks to apply her newly learned skills in an urban conservation and restoration setting, where she can continue to ask questions and interact with her work in a tangible way.

Katarina’s research has been supported by a NIFA grant and several awards from agencies that focus on native plant restoration and conservation, including: the Hardman Foundation Award, the Native Plant Society of Oregon, and the Portland Garden Club.

Join us on Sunday, November 18 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about the nuance of biological controls and Katarina’s journey to graduate school.

Core Strategies for Conservation of Greater Sage-Grouse

Greater sage-grouse (GRSG) is a North American bird species that nests exclusively in sagebrush habitat. In the last century, natural populations of this species have significantly declined largely due to human influenced habitat loss and fragmentation. This has prompted multiple petitions to the U.S. Fish and Wildlife Service (USFWS) to list GRSG under the Endangered Species Act (ESA), which would require mandatory restrictions on critical sagebrush habitat. This means that land managers of sagebrush areas would face land use restrictions for natural resource extraction and development, the bulk of the economy in Wyoming.

Wyoming Basin study site with associated GRSG Core Areas in blue. These Core Areas were designated as part of the GRSG Core Area Protection Act, Wyoming’s GRSG conservation policy aimed at protecting at least 67% of male GRSG attending leks. This policy is focused on directing development outside of these areas by setting strict conservation measures inside the Core Areas. Overall, the policy has remained effective in protecting at least 2/3 of GRSG habitat and has been identified as having the highest conservation value to maintaining sustainable GRSG populations.

 

Scent station and associated trail camera set-up in Natrona County, WY. Scent stations were randomly placed throughout the study site along roads and stratified between Core and Non-Core Areas. Mammalian predators are known to use roads for easy travel. These scent stations will help gather occupancy data of mammalian predators (Photo Credit: Eliana Moustakas).

Wyoming is a stronghold for GRSG, with the most birds, the most leks (male mating display grounds), and the largest contiguous sagebrush habitat in North America. Since GRSG declines have led to its possible endangered listing, Wyoming Governor Dave Freudenthal launched an effort in 2007 to develop stronger policies for GRSG that would protect the species and its habitat while also sustaining the state’s economy. A public forum followed, including representatives from state and federal agencies, non-governmental organizations, and industries, and in 2008 a conservation policy called the Greater Sage-Grouse Core Area Protection Strategy was developed to maintain and restore suitable habitat and active breeding GRSG pairs. The plan aims to protect at least 67% of male GRSG attending leks, and is focused on directing development outside of Core Areas by setting strict conservation measures inside Core Areas. By protecting sagebrush habitat and allowing development and mining in Non-Core Areas, Wyoming can continue to expand its natural resource economy and play a critical role in GRSG conservation.

In 2010, the USFWS concluded that GRSG were warranted protection but left them off the ESA list because threats were moderate and did not occur equally across their range. The status of GRSG was reevaluated in 2015 and the USFWS determined that GRSG did not warrant protection, claiming that the Core Area Strategy was sound framework for a policy by which to conserve GRSG in WY. However, recent monitoring of GRSG has shown that populations are still in decline in some Core Areas and in populations across their range. Our guest this week, Claire Revekant, a second year Master’s student in the Department of Animal and Rangeland Science, is trying to understand if avian and mammalian predator abundance differs between Core and Non-Core Areas.

Golden eagle using a utility pole to perch. Raptors and corvids are known to use  structures to perch and nest.

 

Working under Dr. Jonathan Dinkins, Claire estimates associations between human influence areas and habitat variables on the abundance of predatory birds and occupancy of mammalian predators. For example, raptors and corvids have been documented to perch and nest on fences and other human structures, and roads have been found to be used as travel paths for mammalian predators. Claire’s hypothesis is that predatory animals will be higher in Non-Core Areas where human-influenced environments serves as areas of food subsidies. Identifying areas of predator abundance and relating those areas to human features and habitat variables may help policy makers prioritize plans to mitigate human influence and protect sagebrush habitat.

Badger captured by trail camera at scent station in Lincoln County.

While her research is focused on predators of GRSG, Claire’s work for GRSG conservation contributes to the conservation of other sagebrush-obligate species (species that relay on sagebrush for all or some parts of their life cycle). By protecting the ecosystem for one “umbrella” species, other species may also benefit. Throughout her career as a wildlife biologist, Claire has been involved with numerous projects where she has handled and monitored several species. From learning to band raptors as a child to monitoring seabird productivity as an intern at the Monomoy National Wildlife Refuge, Claire has developed a passion for research. She told us that she can’t remember a time when she had a different dream job. Tune in tonight Sunday November, 11 at 7 to hear more about Claire’s research and her journey to graduate school on 88.7 FM KBVR Corvallis, or stream the show live.

Exploring the disconnect between humans and the ocean

Unseen associations

We are all connected to the ocean, and organisms living in the ocean are an integral – if often unseen – part of our lives. You might be more connected to the ocean than you think. For example, fertilizer used to grow vegetables is often made from fish, and ingredients derived from fish are often added to processed foods. And amazingly, the ocean produces more than half of the oxygen on the planet, while also being responsible for storing 50 times more carbon dioxide than is found in the atmosphere.

The impact of human activity can be observed in a variety of ways. Run-off from agriculture empties into fragile marine ecosystems, and plastic accumulates in the ocean and cycles back into our food supply, for example. Consequences of human activity disturb a precarious balance that is not fully understood. Within the American mind, there is a fractured connection to the ocean, and it is this disconnect that Samm Newton is studying. As a 3rd year Master’s student in the Environmental Arts and Humanities program in the College of Liberal Arts, she is exploring multiple questions as part of her thesis. What has been the role of science and technology in how we have known the ocean? What has been the relationship between that knowledge and how we have valued and made decisions about marine systems? And, how can scholars approach the study of these relationships in new ways?

Scientific inquiry is a tangled knot: the direction of research is often decided based on narrow criteria

Scientific funding agencies have often determined the direction of research based on the priorities of a moment in time. Some priorities arose from crises, while others might have been derived from a perceived risk to lives in human or animal communities. Other priorities were influenced by what types of technology and datasets were available. Within that structure, it has been difficult for science to be innovative if it doesn’t address a problem that has been classified as relevant by funding authorities. Samm explains further, “we have taken the environment, deconstructed its components, and focused only on certain aspects that we deemed interesting at a given moment, while the rest of the pieces slid into the background.”

Samm studies the ocean using methods traditionally associated with the humanities. She describes her method as an interdisciplinary approach to unpack how we have generated knowledge about the ocean through science. Her approach includes extracting information from scientific history and papers, archives, oral histories, as well as popular literature from sources like National Geographic and the Washington Post.

Different ways to think about our connection with the ocean

How can we encourage people to recognize their connection to the ocean, and direct their attention to how their lives are impacted by ocean issues? Samm indicates how advancements in technology and media have created new ways for people to access scientific knowledge about the ocean. With outlets such as Nautilus live, people can learn about ocean ecosystems by watching videos of organisms living in the sea. They can also interact with scientists in real time (check out this one about a large number of octopus brooding near Monterey Bay, CA. Science videos on the internet have become an engaging and popular way to share knowledge of the ocean and science with a broad audience.

“The ocean is very special to me.”

Samm grew up in the “shadow of the petrochemical industry” in Freeport, Texas, where the sea is brown, and air and water pollution are an everyday reality. Observing these anthropogenic forces impacting her coast and community, and how disconnected people seem to be from the ocean, led her to question the relationship between humans and marine environments. She found that science and technology have played a dominant role in how we have known the ocean—and possibly how we have valued it. Samm also found that methods from the humanities, particularly marine environmental history, as well as science and technology studies, provide a meaningful framework to examine that relationship further.

During her undergrad, Samm studied psychology and behavioral neuroendocrinology, with a focus toward consciousness and philosophy of the mind. She spent 10 years working outside of academia before pursuing a Master’s degree at OSU. Samm credits the Environmental Arts and Humanities program at OSU with providing a flexible framework for people from different backgrounds – including art and science – to decide how they want to study a topic of interest.

After finishing her Master’s degree, Samm plans to pursue a PhD in an interdisciplinary field studying environmental issues. As a graduate student at OSU, Samm has enjoyed working in a “scholarly space, and getting the opportunity to do research.” Beyond grad school, Samm’s goal is to be involved in work that transforms the world, and to contribute to projects that strengthen interdisciplinary associations between diverse, yet interconnected, academic fields.

Check out Samm’s exhibit at Autzen House on the OSU campus:The Need to Know Comes in Waves: Paintings by Samm Newton

On view from Sept. 20th – Dec. 15th, 10 AM – 4 PM at Autzen House (811 SW Jefferson)

Reception Oct. 18th, 4 – 6 PM; mini artist talks at 4:30 and 5:30

Samm will also be the Featured Artist at Hatfield Marine Science Center in Newport, OR in January 2019. Check out this page for more details!

Finding cancer with sound: the development of nanoparticles to deliver light-to-sound converting agents

“Here I am!” -Cancer

Wouldn’t it be nice if cancer could simply yell out to let us know where it is, and how much of it is there? Anna St. Lorenz, a 4th year PhD student in the College of Pharmacy, is working on just that.

Anna volunteering at Brain Day at OMSI science museum.

Anna’s path to scientific research began when she was 8 years old, on a farm, with some chickens and a candle-lit microscope. Anna spent much of her childhood becoming familiar with the local ecology, as well as the Mendelian laws of genetic inheritance that applied to her family’s chicken breeding. However, her first taste of research was in Death Valley. With funding provided through Smith College associated religious programs, Anna studied arsenic-eating-microbes, but thanks to some giant spiders and allergies, Anna decided field research wasn’t for her and moved to a hospital setting.

In college, Anna’s scientific education expanded further through multiple internships and unique educational opportunities at Novartis Pharmaceuticals, Dana-Farber Cancer Institute and OHSU. Anna obtained a B.A. in Biology with a minor in Neuroscience from Smith College. Receiving a B.A. rather than a B.S. meant that Anna’s science education was interdisciplinary, and incorporated disciplines such as history and the fine arts. Anna’s love of the arts still persists as she frequently paints and creates “bioart,” which she uses as a means to inform and involve the community on her scientific endeavors. She commonly uses her work with her husband, Grey St. Lorenz, in presentations and has previously collaborated with artists in upstate New York for work on display at local universities. 

Bioart by Anna. Nanoparticles taken up by an endosome, that then create a pore in the endosome’s membrane to release their payload. It is done in the style of Starry Night and the nanoparticle’s payload matches up with the stars.

After completing her undergraduate degree, Anna received a Master’s in Biomedical Engineering from Rensselaer Polytechnic Institute. While finishing up her Master’s degree, Anna moved to Boston and started working at MIT as a nanoparticle research technician within the Langer Lab. It was at MIT that she learned about a new nanoparticle-specific program being implemented in the OSU College of Pharmacy. This program is now about four years new and Anna has been at the front line of pioneering this program for future graduate students. In addition to navigating a new program and coping with the regular difficulties of being a graduate student, this OSU nanoparticle program is actually based at the Oregon Health & Science University (OHSU) in Portland. Although challenging at times, as a graduate student researching cancer therapeutic technology, OHSU is great place to be.

Anna and the Taratula group.

In this program, Anna works with the Taratula group on ovarian cancer diagnosis. As a disease that is traditionally hard to detect at early stages, it is often only after the cancer has spread to other areas of the body in later stages that diagnosis is able to be made. This metastasis results in a worse prognosis and decreased survival rates. To this end, Anna and other researchers and medical professionals are developing nanoparticles to deliver various iterations of imaging agents. Anna’s role in this process is to design more specific nanoparticles to carry various agents through the bloodstream and allow for specific staining of cancerous tissue.

Bioart by Anna and Grey St. Lorenz demonstrating a nanoparticle (blue) encapsulating a compound (red) and adorned with targeting antibodies (green).

Have you ever used facewash with textured particles in it?  Nanoparticles are 1/1000th of that size and are used to envelop or otherwise transport compounds throughout the body and deliver them to more specified regions. This technology can be applied to a variety of compounds to enhance their delivery needs. Solubility issues, tissue or disease specificity, PH, heat, and enzyme specific release are all areas that nanoparticle science delves into to address patient care. So now, the imaging agent, inside of its tiny carrier, can circulate through the body and find the cancerous tissue it’s designed to target.

As tumors are characteristically disorganized tissue whose unregulated growth demands increased nutrients, they develop a leaky vasculature  which makes it easier for molecules to permeate the tissue. Once the nanoparticle reaches the tumor, it is able to take advantage of the enhanced permeability of tumors to infiltrate and label the cancer cells. An important characteristic of the works is that the compounds use near-infrared (near-IR) light, which can be administered to excite the delivered agents in a spectral range that is largely unaffected by organic tissue. These agents were specifically screened for their ability to convert this light to acoustic/sounds waves that are detectable by ultrasound imaging.  This process allows for an enhanced detection and characterization of ovarian cancer – opening the door for effective screening and improved monitoring of this devastating disease.

Join us Sunday November 4th at 7PM on 88.7FM, or listen live, to learn more about Anna’s exciting journey to graduate school, bioart, sound-making cancer, and nanoparticles.

The Sights and Sounds of Purple Martins

The aesthetic beauty and spiritual connectivity the Native Americans have to the Purple Martin is undeniably strong, it’s no wonder the general public have embraced this special bird and encouraged their presence by adding nest boxes in their backyards. However, it’s this strong embrace in urbanized areas that could be stifling the ability for these animals to find and utilize forest habitats that could be spelling trouble for the birds’ future success. Currently the Purple Martin is listed in the state of Oregon as a “Sensitive-Critical Species” and our guest Lorelle Sherman, a 2nd year Masters student in the Department of Forest Ecosystems and Society, is going to help us understand how humans have possibly altered their natural tree-nesting behavior of the Purple Martin population.

Male Purple Martins who are the largest birds in the Swallow group. Photos curtsey of the Cornell Lab of Ornithology

These are birds with an eye-popping iridescent blue-purple body, sleek black wings with a forked tail that aid in its magnificent maneuverability allowing them to fly at speeds of 45 mph or faster. The Purple Martins often nest in groups to help protect each other from predators, their colonial personalities help generate southing chitchat between birds, and they’re very happy to live in artificial nest boxes. So much so that on the east coast of the US they live almost exclusively in bird boxes. Therein lies the problem – these birds are common on the east coast because they completely depend on habitat provided to them by humans; some researchers worry they have lost the generational knowledge of going to the forest to find suitable homes. Conversely, along the west coast of the US they generally utilize cavities in snags (standing dead trees) as their nesting site, but adding backyard bird boxes for the Purple Martin are becoming more common.

Purple Martin in a natural tree snag (standing dead tree) habitat.

Purple Martins are aerial insectivores meaning they only eat insects while they are in flight. Here is a classic yummy meal for the bird.

Although humans are supplementing places for these birds to nest, high quality habitat in forested areas are shrinking because our natural ecosystems are in peril. Purple Martins have historically depended on wildfires to clear open areas for better hunting grounds, but with the onset of fire-suppression efforts across the west these birds are more reliant on clearcuts typical of industrial forestlands. Couple these regional patterns with the recent global finding that flying insect populations (Martins’ food source is exclusively from eating insects while in-flight) in the tropics are expected to decline as much as 20%, and from 1989-2016 German nature preserves have documented a 75% decline flying insects biomass. It’s no surprise that aerial insectivores being the most rapidly declining group of birds in North America. If scientists are to better understand avian populations, the habitat qualities and the relative availability of food necessary for their survival must be assessed simultaneously.

Lorelle is banding a Purple Martin near a wetland to be able to track it’s movements in the future

Lorelle will help us untangle the effects of declining insect populations, possibly driven by a warming climate, and overlay those links with how humans on the west coast are putting up more artificial bird boxes making it easier to for birds to disregard forests as potential habitat all together. She is slowly uncovering the hidden elements of these critical birds by studying the food sources in two different habitats, an upland forest and along waterways with artificial bird boxes, and the birds’ willingness to seek out ideal habitat. Lorelle has grown up infatuated by birds her whole life, often running away from home just to sit underneath a tree to observe her flying friends overhead. At the age of eight her parents got her binoculars to cultivate her love of birds that she carried through her undergraduate research experiences in Vermont studying Double-crested Cormorants and Great Horned Owls. After a landing a dream job at a non-profit focusing on environmental education and green infrastructure in Pennsylvania she decided it was a good time to return to school to pursue a graduate degree. She originally moved to Oregon to work at the Bandon National Wildlife Preserve, but is now a Masters Student with Dr. Joan Hagar while continuing her outreach activities volunteering for birding festivals such as the Oregon Shorebird Festival and the Birding & Blue Festivals. In her free time you can find Lorelle running away from the office and searching for mushrooms, wild edibles, or other elusive birds.

Join us Sunday October 21st at 7PM on 88.7FM, or listen live, to learn more about Purple Martins and how these birds are intimately tied to the natural ecosystems around us as well as the urbanized spaces we occupy together.

Lorelle at the age of 8 continuing her passion for the outdoors with with her grandfather; note the binoculars which were one of the many steps to foster her love for birds.

How to not come unglued: A wood adhesive story

It all started with a broken (tanbur) neck

A traditional Persian tanbour. Photo credit: nasehpour.com

While playing the tanbur in his native country of Iran, tonight’s guest Yahya Mousavi found the wooden instruments are sensitive to the moisture and it cannot produce high quality sounds in humid conditions. The tanbur, a traditional Persian string instrument, is the ancient ancestor of the guitar with a pear-shaped body composed of wood, a long neck, and many strings. In his third year of undergraduate studies, Yahya begin to develop a suitable substitute for wood in making musical instruments. He shared his idea with his professor. The professor was excited about the idea and allowed Yahya to pursue the research, which resulted in many publications, such as [1-3], both in English and Persians, as well as the manufacturing a tanbur, a setar, and a tar (the names of some Persian musical instruments) from polymeric composites, rather than wood.

Hunting for safe adhesive alternatives

Wood Science & Engineering PhD Student, Yahya Mousavi

It seems that wood science has always piqued Yahya’s interest, but now instead of focusing on instruments, he is focusing on an issue with a much broader impact – developing a safe, sustainable adhesive for wood composite production. Wood-composites such as particleboard and plywood wood are mainly used to construct buildings, make furniture, cabinetry, etc.; however, in order to make these wood composite panels, an adhesives have to be used to hold all the layers together. The problem is, the adhesive that has been used historically and is currently in use contains the toxic chemical formaldehyde, which is known to cause different cancers and mental disorders. The California Air Resources Board (CARB) passed a regulation on limiting formaldehyde emission from wood-based products used and sold in California in April 2007. A national regulation of limiting formaldehyde emission, ‘‘formaldehyde standards for composite wood products act,’’ was signed into law on July 7, 2010.

This has been the focus of Yahya’s PhD research for the past three years in Dr. Kaichang Li’s lab in the Department of Wood Science and Engineering in Oregon State University’s College of Forestry. The first goal of the research was to find a safe replacement for formaldehyde-based adhesives. Currently, isocyanates is being used as a replacement, but poses similar health risks. Secondly, the Li Lab was seeking to find something renewable. Yahya set out to find if he could fulfill both of these goals with soybean-based adhesives. In order to do so, he would need to find a way to make an adhesive that could pass all the standard requirements for use, which requires various water soaking tests. The main issue with soy-based adhesives was that they are not water resistant.

Close-up view of plywood board. Photo credit: apawood.org

Success for soy-based adhesives

In his research, Yahya was able to crosslink the functional groups of soybean flour using a polymer named poly (glycidyl methacrylate-co-styrene) (PGS). To do this, poly (glycidyl methacrylate-co-styrene) (PGS) emulsions were synthesized through a free radical initiated emulsion polymerization of glycidyl methacrylate (GMA) and styrene. The PGS was characterized with FTIR, and investigated as a curing agent for soybean flour (SF)-based wood adhesives. Seven-ply plywood panels were prepared with the SF-PGS adhesives and were evaluated for their water resistance through a three-cycle water-soaking test. Effects of the PGS/SF weight ratios, hot press temperature, hot press time, and usage of NaOH on the water resistance of the resulting plywood panels were investigated. Plywood panels made with the SF-PGS adhesives met the industrial requirement for interior plywood. More information about this research can be found in [4].

In another study, Yahya was able to develop a cold-set wood adhesive based on soy protein isolate. This adhesive was able to pass all the standard requirements for exterior plywood such as the two-cycle boil test, dry shear test, and cyclic-boil shear test. Now, Yahya is working to modify this cold-set adhesive for manufacturing of cross-laminated timber (CLT) panels, which are a novel wood product recently introduced to the construction industry and it is expected to grow very fast.

While Yahya is not personally involved in the translation of his research into industry practices, the ultimate goal would be for these soy-based adhesives to be widely used by the wood composite industry reducing widespread exposure to toxic chemicals.

Following passion with purpose

Yahya enjoying one of Oregon’s many waterfalls at Silver Falls State Park.

Yahya is an engineer by trade and began his career in polymer engineering when obtaining his Bachelor of Science and Master of Science at the Islamic Azad University (IAU)in Tehran, Iran. (Fun fact: IAU is the fifth largest university in the world based on an enrollment of over 1.5 million students!?) Yahya hopes to one-day have a faculty position where he can continue conducting polymer research on meaningful projects.

Join us on Sunday, October 14 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Yahya’s quest to find a safe, sustainable wood adhesive alternative and his journey to graduate school at Oregon State.

[1] Jalili MM, Pirayeshfar AS, Mousavi SY (2012) A comparative study on viscoelastic properties of polymeric composites measured by a longitudinal free vibration non-destructive test and dynamic mechanical thermal analysis. Iran Polym J 21:651–659. DOI: 1

[2] Jalili MM, Mousavi SY, Pirayeshfar AS (2014) Investigating the acoustical properties of carbon fiber-, glass fiber- and hemp fiber-reinforced polyester composites. Polym Compos DOI: 10.1002/pc.22872.

[3] Jalili MM, Mousavi SY, Pirayeshfar AS (2014) Flexural free vibration as a non-destructive test for evaluation of viscoelastic properties of polymeric composites in bending direction. Iran Polym J (2014) 23: 327. DOI: 10.1007/s13726-014-0227-x.

[4] Mousavi SY, Huang J, Li K (2018) Investigation of poly (glycidyl methacrylate-co-styrene) as a curing agent for soy-based wood adhesives. Int. J. Adhes. Adhes 82: 67-71, DOI: 10.1016/j.ijadhadh.2017.12.017.

Infection Interruption: Identifying Compounds that Disrupt HIV

Know the enemy

Comparing microbial extracts with Dr. Sandra Loesgen.

The Human Immunodeficiency Virus, or HIV, is the virus that leads to Acquired Immunodeficiency Syndrome (AIDS). Most of our listeners have likely heard about HIV/AIDS because it has been reported in the news since the 1980s, but our listeners might not be familiar with the virus’s biology and treatments that target the virus.

  • HIV follows an infection cycle with these main stages:
    • Attachment – the virus binds to a host cell
    • Fusion – the viral wall fuses with the membrane of the host cell and genetic material from the virus enters the host cell
    • Reverse transcription – RNA from the virus is converted into DNA via viral enzymes
    • Integration – viral DNA joins the genome of the host cell
    • Reproduction – the viral DNA hijacks the host cell activity to produce more viruses and the cycle continues
  • Drug treatments target different stages in the HIV infection cycle to slow down infection
  • However, HIV has adapted to allow mistakes to occur during the reverse transcription stage such that spontaneous mutations change the virus within the host individual, and the virus becomes tolerant to drug treatments over time.

Faulty Machinery

Due to the highly mutable nature of HIV, a constant supply of new drug treatments are necessary to fend off resistance and treat infection. Our guest this week on Inspiration Dissemination, Ross Overacker a PhD candidate in Organic Chemistry, is screening a library of natural and synthetic compounds for their antiviral activity and effectiveness at disrupting HIV. Ross works in a Natural Products Lab under the direction of Dr. Sandra Loesgen. There, Ross and his lab mates (some of whom were on the show recently [1] [2]) test libraries of compounds they have extracted from fungi and bacteria for a range of therapeutic applications. Ross is currently completing his analysis of a synthetic compound that shows promise for interrupting the HIV infection cycle.

“Uncle Ross” giving a tour of the lab stopping to show off the liquid nitrogen.

Working in Lab with liquid nitrogen.

 

 

 

 

 

 

 

Havin’ a blast

Chemistry Club at Washington State University (WSU) initially turned Ross onto chemistry. The club participated in education outreach by presenting chemistry demonstrations at local high schools and club events. Ross and other students would demonstrate exciting chemistry demos such as filling hydrogen balloons with salt compounds resulting in colorful explosions piquing the interest of students and community members alike. Ross originally made a name in

Collecting Winter Chanterelles in the Pacific Northwest.

WSU’s chemistry club, eventually becoming the president, by showing off a “flaming snowball” and tossing it from hand to hand—don’t worry he will explain this on air. For Ross, chemistry is a complicated puzzle that once you work out, all of the pieces fall into place. After a few undergraduate research projects, Ross decided that he wanted to continue research by pursing a PhD in Organic Chemistry at Oregon State University.

 

 

Tune in this Sunday October 7th at 7 PM to hear from Ross about his research and path to graduate school. Not a local listener? Stream the show live or catch this episode on our podcast.

Learning without a brain

Instructions for how to win a soccer game:

Score more goals than your opponent.

Sounds simple, but these instructions don’t begin to explain the complexity of soccer and are useless without knowledge of the rules of soccer or how a “goal” is “scored.” Cataloging the numerous variables and situations to win at soccer is impossible and even having all that information will not guarantee a win. Soccer takes teamwork and practice.

Researchers in robotics are trying to figure out how to make a robot learn behaviors in games such as soccer, which require collaborative and/or competitive behaviors.

How then would you teach a group of robots to play soccer? Robots don’t have “bodies,” and instructions based on human body movement are irrelevant. Robots can’t watch a game and later try some fancy footwork. Robots can’t understand English unless they are designed to. How would the robots communicate with each other on the field? If a robot team did win a soccer game, how would they know?

Multiple robot systems are already a reality in automated warehouses.

Although this is merely an illustrative example, these are the types of challenges encountered by folks working to design robots to accomplish specific tasks. The main tool for teaching a robot to do anything is machine learning. With machine learning, a roboticist can give a robot limited instructions for a task, the robot can attempt a task many times, and the roboticist can reward the robot when the task is performed successfully. This allows the robot to learn how to successfully accomplish the task and use that experience to further improve. In our soccer example, the robot team is rewarded when they score a goal, and they can get better at scoring goals and winning games.

Programming machines to automatically learn collaborative skills is very hard because the outcome depends on not only what one robot did, but what all other robots did; thus it is hard to learn who contributed the most and in what way.

Our guest this week, Yathartha Tuladhar, a PhD student studying Robotics in the College of Engineering, is focused on improving multi-robot coordination. He is investigating both how to effectively reward robots and how robot-to-robot communication can increase success. Fun fact: robots don’t use human language communication. Roboticists define a limited vocabulary of numbers or letters that can become words and allow the robots to learn their own language. Not even the roboticist will be able to decode the communication!

 

Human-Robot collaborative teams will play a crucial role in the future of search and rescue.

Yathartha is from Nepal and became interested in electrical engineering as a career that would aid infrastructure development in his country. After getting a scholarship to study electrical engineering in the US at University of Texas Arlington, he learned that electrical engineering is more than developing networks and helping buildings run on electricity. He found electrical engineering is about discovery, creation, trial, and error. Ultimately, it was an experience volunteering in a robotics lab as an undergraduate that led him to where he is today.

Tune in on Sunday at 7pm and be ready for some mind-blowing information about robots and machine learning. Listen locally to 88.7FM, stream the show live, or check out our podcast.

Challenging assumptions about wellness and illness through the lens of Mad Studies

Our entire environment is built upon assumptions about how someone is supposed to move and interact with/in the world. Although disability studies have been around for a long time, in recent years the field has distanced itself from the medical model of disability, in which people with disabilities are viewed as flawed and in need of cure, instead towards a social model of disability. In the social model of disability, an individual in a wheelchair is not the problem; rather, the problem is the building without a ramp and automatic doors. As a 2nd year PhD student of Dr. Patty Duncan in the Women, Gender, and Sexuality Studies Program at OSU, Lzz Johnk pursues questions posed by Mad Studies scholars, such as, what does it mean to think of Mad, neuroqueer, neurodivergent, and mentally disabled people as self-organizing political agents, instead of individuals who society must deal with to maintain order? The core of Lzz’s research consists of applying a genealogical lens to the root of Mad Studies, which is a field examining the lived experiences and culture surrounding individuals identifying as mentally ill, neurodiverse, mentally disabled, and/or Mad. From a white-dominated, Amerocentric perspective, Mad Studies has been around for ~10 years, although the field actually goes back much further, with its roots in the perspectives of people of color, and more specifically, women of color. Lzz explains, “we need to interrogate who gets to decide what constitutes Mad Studies.”

Framing the history of Mad Studies

Examining and interrogating the history of Mad Studies requires understanding the relationships within that history. The location and history of the institution provides framework for the context of the research being done within, as institutions are saturated in the history of the land. Specifically, what does it mean for a white, European settler at a land grant institution such as OSU to be working and researching in a field steeped in the lived experiences of Indigenous people and people of color? Much of the work being done in Mad Studies is limited to the perspectives of cis-masculine individuals and ignores the work of marginalized peoples.

We are all stigmatized to varying extents based on components of our identities, be it national identity, religion, gender, or social class, which is conceptually encompassed by a theory forwarded by Black and other feminists of colour known as intersectionality. The degree to which these stigmas overlap and compound, can effectively result in more acute and damaging marginalization. Historically, people of color and femme and/or gender-deviant people have been hyper-diagnosed as Mad (think of the stereotype of hysteria applied to women). As an example, in considering borderline personality disorder as discussed by writer Susanna Kaysen, Lzz asks, “where is the border-line? Why do women cross that line so often? That line has historically been set and upheld by white settler cis-masculine doctors who determine the boundaries of Madness and wellness. But, the closer you look at the line, the harder it is to define.”

Implementing change

One reason Lzz cites as motivation to return to the academy is to be part of the conversation to make real change in the lives of people identifying as Mad. Changes are being implemented at an unacceptably slow rate. However, Lzz’s research is not directly associated with generating tailored recommendations about health, and explains, “we should be really cautious about the people and institutions making recommendations, by asking what community they are coming from and what their intentions might be. The tendency of entire fields to broad-brush people, and to distill people’s identities into crude stereotypes that get turned against them in moments of vulnerability – as if it is remotely possible to categorize an individual’s whole life experience – is one reason why Mad and disabled people are so stigmatized in our culture.”

Lzz cites the work of Gloria Anzaldúa, a Chicana feminist, as being a critical influence on their wanting to pursue the study of Madness. Anzaldúa wrote and theorized mind-body differences embodying what gets pathologized as Madness or disability. Lzz relates how the work of Anzaldúa exposed them to the concept of navigating overlapping interstitial spaces – or “the space between things, where things don’t fit; falling between, but not quite fitting into binary systems of identity, such as gender.” In this sense, Mad and disabled people are continually finding ourselves in ambiguous terrain.

Why OSU?

Lzz completed their undergrad at Michigan State University in Cultural Anthropology with a certificate in Asian Studies, followed by completion of an MA at Eastern Michigan University in Women and Gender Studies. Lzz felt they could handle doctoral-level work, and also felt strongly that the institution they ended up pursuing a PhD at would need to embrace their Madness. About OSU, Lzz says, “the faculty in my program, in all of their various subfields, are really stellar. Even faculty who don’t necessarily position themselves within Mad Studies are supportive.”

Future directions

Lzz loves teaching and research and would like to pursue these endeavors after graduate school. They also enjoy community work and plan to be involved in outreach to young people who might need support in navigating their neuroqueerness, Madness, and/or mental illness. As someone who has experienced violent pathologization firsthand – fostering a sense of self-hatred instead of acceptance and celebration – Lzz feels that teaching can be one way to disrupt those violences and impact people’s lives in a tangible and meaningful way.

You will not want to miss our interview with Lzz on Sunday, September 16th at 7pm. Listen live on KBVR Corvallis 88.7 FM or stream live. Also, check us out on Apple Podcasts!