Category Archives: Integrative Biology

James and the Giant Beetle Question

A very handsome beetle.

A very handsome beetle. credit: Carabidae of the World

James Pflug, fourth year PhD student, grew up in rural Missouri turning over rocks, catching and collecting insects. Messin’ with bugs is his favorite activity, and his parents encouraged him to pursue this passion as a career. Good thing too, because James is now working at Oregon State University Department of Integrative Biology with advisor David Maddison. In the Maddison Lab, James studies carabid beetles (ground beetles), specifically vivid metallic ground beetles. According to James, this beetle group is composed of the “most handsome” beetles. James is one of many scientists, phylogeneticists, around the world working to sort out the family tree of this group. This is not just a who-is-related-to-who question, but really a how is subgroup A of beetles related to subgroup B, and how do subgroups A and B related to other beetle subgroups?

James spends many days identifying boxes of ground beetles.

James spends many days identifying ground beetles.

How do you figure out how beetles are related to each other? Well, DNA of course! Just as you could have your own genome analyzed to understand your ancestry, James is collecting beetles from around the world, analyzing their genomes, and interpreting their ancestry. Scientists have already developed a variation assay to tell you what percent European, Asian, or Native American you may be, and James is working to develop the same thing for ground beetles! This will be a huge step forward for beetle phylogenetics AND think of all the beetles who will now know where their family originates! Just kidding about the latter, but you get the idea.

James started getting serious about bug study during his time as an undergraduate working in the Enns Entomology Museum at the University of Missouri. Almost as though he was in the right place at the perfect time, a position presented itself in the research lab of the museum’s curator, Robert Sites. Together with Arabidopsis researcher, Chris Pires, Sites was interested in the phylogenetics of biting water bugs, and they needed James to work in the lab. James got hands on experience extracting DNA from insects and performing next-generation genome sequencing and analysis. This experience, in time, was his ticket into the Maddison Lab at OSU where he is currently using next-generation sequencing techniques to understand the evolutionary history of ground beetles.

James performing DNA Isolation in the lab.

James performing DNA Isolation in the lab.

In addition to unpacking and reassembling the genome of ground beetles, James is committed to science communication. James knows that good science communicators are good teachers and they attract people to science and instill excitement for topics that might seem a bit dull on the surface, like beetle family trees. From personal experience, James is a captivating speaker who makes beetle phylogenetics thrilling and aesthetically pleasing. Fuzzy carabid beetles are handsome. Check out James’ blog, Beetlefacts.org, to learn more about this stunning group of beetles. They are truly diverse in habitat, appearance, and diet!

Tune you radio to 88.7 FM KBVR Corvallis this Sunday, May 1 at 7 PM to hear more about James’ research and journey to graduate school. Not from ‘round here? Stream the show live!

Whosits & Whatsits Galore: What do larval fish eat, and who eats them?

20150402_HatfieldGradStudentMiram_HO-4675  Tonight on Inspiration Dissemination, Miram Gleiber (a 1st year PhD student in Integrative Biology) discusses her passion for ‘le poisson’. Working underneath Su Sponaugle and Bob Cowan, Miram first got into the piscine when she was a little girl, investigating tide pools in Victoria, British Columbia. “When you take a scoop of water from the ocean you don’t realize what’s in it,” Miram muses, “… it’s a whole other world.”

Figure 1  Figure 2

Above: Larval Fish captured in the Straits of Florida (Photos by: Cedric Guigand) on the left, and on the right, Copepods captured in the western Antarctic Peninsula: Clockwise from top left are Calanus propinquus, Paraeuchaeta antarctica, Metridia gerlachei, Calanoides acutus (Photos by: Miram Gleiber)

Because Larval fish grow up to be reef fish, which are good for biodiversity and tourism, obtaining accurate numbers of wild stock that survive the larval stage and understanding what conditions promote survival is valuable knowledge. The fish first hatch and “hang out” for thirty days in the open ocean before coming back to the reef, during which time they subsist largely on patches of zooplankton and phytoplankton that float around in the open ocean. Miram’s current research at OSU aims to understand how these patches of tiny biodiversity contribute to the growth and survival of the small fishes that eventually make their way into the view of our camera lenses and photo albums, and sometimes to our plates, as well.

To learn more about Miram and her adventures on the open sea, join us at 7pm Pacific on 88.7 FM KBVR Corvallis, or stream the talk live here!

ARSV Laurence M. Gould, a 230-foot Antarctic research vessel.

ARSV Laurence M. Gould, a 230-foot Antarctic research vessel.

From Systems Bio and Symbiosis to Nepovirus and Nematodes

There are perhaps a many as one million species of nematodes. Some parasitic varieties can grow to a meter in length, but most are microscopic in size. They inhabit almost every environment imaginable, from salt water to soil, and even human bodies. But it isn’t the symbiosis between a parasitic nematode like hookworm and a human that Danielle Tom is interested in, her research in the Department of Integrative Biology at OSU concerns a particular nematode called Xiphinema americanum.

51XyTEl0Y1L Despite the fact that nematodes cover most of the planet’s surface and there are probably billions of them thriving on the earth at any given moment, surprisingly little is still known about the worms. Xiphinema americanum, for instance, carries a bacteria specially designed to live inside it called Xiphinematobacter. Studying the evolutionary genomics of these species can help elucidate the phylogenetic, or evolutionary, history of both. This work is important to the United States Department of Agriculture, because Xiphinema americanum is a potential carrier for nepovirus, which can infect important crops like grapes, raspberries, and tobacco via these plants’ root systems, which the worm also exists in a symbiotic relationship with. This sort of an analysis, of an animal and its relationship to its environment at multiple levels of scale and with regard to multiple other species, is called systems biology.

Danielle works under Dee Denver, associate professor and director of the the Molecular Cellular Biology program (MCB), and she will be joining us on the show tonight at 7pm pacific time.

To learn more about this exciting research and her personal journey into genomics and biology, tune into 88.7 FM to listen, or stream the show live here!