Category Archives: History of Science

Exploring the disconnect between humans and the ocean

Unseen associations

We are all connected to the ocean, and organisms living in the ocean are an integral – if often unseen – part of our lives. You might be more connected to the ocean than you think. For example, fertilizer used to grow vegetables is often made from fish, and ingredients derived from fish are often added to processed foods. And amazingly, the ocean produces more than half of the oxygen on the planet, while also being responsible for storing 50 times more carbon dioxide than is found in the atmosphere.

The impact of human activity can be observed in a variety of ways. Run-off from agriculture empties into fragile marine ecosystems, and plastic accumulates in the ocean and cycles back into our food supply, for example. Consequences of human activity disturb a precarious balance that is not fully understood. Within the American mind, there is a fractured connection to the ocean, and it is this disconnect that Samm Newton is studying. As a 3rd year Master’s student in the Environmental Arts and Humanities program in the College of Liberal Arts, she is exploring multiple questions as part of her thesis. What has been the role of science and technology in how we have known the ocean? What has been the relationship between that knowledge and how we have valued and made decisions about marine systems? And, how can scholars approach the study of these relationships in new ways?

Scientific inquiry is a tangled knot: the direction of research is often decided based on narrow criteria

Scientific funding agencies have often determined the direction of research based on the priorities of a moment in time. Some priorities arose from crises, while others might have been derived from a perceived risk to lives in human or animal communities. Other priorities were influenced by what types of technology and datasets were available. Within that structure, it has been difficult for science to be innovative if it doesn’t address a problem that has been classified as relevant by funding authorities. Samm explains further, “we have taken the environment, deconstructed its components, and focused only on certain aspects that we deemed interesting at a given moment, while the rest of the pieces slid into the background.”

Samm studies the ocean using methods traditionally associated with the humanities. She describes her method as an interdisciplinary approach to unpack how we have generated knowledge about the ocean through science. Her approach includes extracting information from scientific history and papers, archives, oral histories, as well as popular literature from sources like National Geographic and the Washington Post.

Different ways to think about our connection with the ocean

How can we encourage people to recognize their connection to the ocean, and direct their attention to how their lives are impacted by ocean issues? Samm indicates how advancements in technology and media have created new ways for people to access scientific knowledge about the ocean. With outlets such as Nautilus live, people can learn about ocean ecosystems by watching videos of organisms living in the sea. They can also interact with scientists in real time (check out this one about a large number of octopus brooding near Monterey Bay, CA. Science videos on the internet have become an engaging and popular way to share knowledge of the ocean and science with a broad audience.

“The ocean is very special to me.”

Samm grew up in the “shadow of the petrochemical industry” in Freeport, Texas, where the sea is brown, and air and water pollution are an everyday reality. Observing these anthropogenic forces impacting her coast and community, and how disconnected people seem to be from the ocean, led her to question the relationship between humans and marine environments. She found that science and technology have played a dominant role in how we have known the ocean—and possibly how we have valued it. Samm also found that methods from the humanities, particularly marine environmental history, as well as science and technology studies, provide a meaningful framework to examine that relationship further.

During her undergrad, Samm studied psychology and behavioral neuroendocrinology, with a focus toward consciousness and philosophy of the mind. She spent 10 years working outside of academia before pursuing a Master’s degree at OSU. Samm credits the Environmental Arts and Humanities program at OSU with providing a flexible framework for people from different backgrounds – including art and science – to decide how they want to study a topic of interest.

After finishing her Master’s degree, Samm plans to pursue a PhD in an interdisciplinary field studying environmental issues. As a graduate student at OSU, Samm has enjoyed working in a “scholarly space, and getting the opportunity to do research.” Beyond grad school, Samm’s goal is to be involved in work that transforms the world, and to contribute to projects that strengthen interdisciplinary associations between diverse, yet interconnected, academic fields.

Check out Samm’s exhibit at Autzen House on the OSU campus:The Need to Know Comes in Waves: Paintings by Samm Newton

On view from Sept. 20th – Dec. 15th, 10 AM – 4 PM at Autzen House (811 SW Jefferson)

Reception Oct. 18th, 4 – 6 PM; mini artist talks at 4:30 and 5:30

Samm will also be the Featured Artist at Hatfield Marine Science Center in Newport, OR in January 2019. Check out this page for more details!

Learn the past. Speak the present. Guide the future.

Lake Victoria, sitting just below the equator in eastern Africa, shared between the countries of Kenya, Uganda, and Tanzania is the second largest freshwater lake in the world. To put that into

Early 20th century map of Lake Victoria

Colonial territories surrounding Lake Victoria in the early 20th Century

perspective, at 68,800 square kilometers, Lake Victoria is larger than the country of Switzerland (41,285 sq. km.). Beyond its immense size and grandeur, it is also one of the most important sites on earth for our current understanding of evolution because of one rapidly-diversifying group of fishes: the cichlids, which include both tilapia, an important food source, and aquarium fish such as angelfish.

 

The cichlids in Lake Victoria are especially interesting because that body of water dried out and refilled less than 15,000 years ago. This may seem like a long time, but on a geologic and evolutionary timescale, that’s less than the blink of an eye. Consider that before 1980, itwas estimated that there were over 500 species of cichlids in Lake Victoria. To contrast that with our own timeframe, the speciation time from our last common ancestor with chimps was on the order of millions of years ago. The fish in this lake are evolving at record speeds.

Traditionally haplochromines were harvested and dried as a food source for indigenous peoples Most of these practices were outlawed in 1908 Most subsistence fishing on Lake Victoria today is illegal

Traditionally haplochromines were harvested and dried as a food source for indigenous peoples Most of these practices were outlawed in 1908 Most subsistence fishing on Lake Victoria today is illegal

Today, the populations of cichlids in Lake Victoria have plummeted and many species are either endangered or extinct. The extinction was due to environmental pressures and invasive species such as the nile perch, a large predator game fish with an appetite for a group of small cichlid fish known as Haplochromis. Like many invasive species, the introduction of the nile perch was no accident. It was introduced to stem the overfishing of tilapia in the 1920s. This worked, but at the price of hundreds of species of Haplochromis. Now that the biodiversity in the lake is reduced, there are efforts to protect these species that are informed by scientific inquiry, but who gets a say in how management decisions are made? How did the focus of inquisition change over the past hundred years?

 

Cat. Man. Do.

Matt his cat work on writing Matt’s thesis

Our guest, Matt McConnell, is trying to answer these questions and trying to understand how communication between scientists and non-scientists affect how science is done. As a Masters Student in the History of Science department or Oregon State University, he is digging through the archives, trying to understand the changing scientific values surrounding Lake Victoria in the 20th century. Is the lake important as a resource or as a haven for species? Why should we care? Our current notion of science is that it is objective, but as we look into its history, science is value-driven, which is culturally laden; the question is, who’s culture is asking the questions and who’s culture is affected? In our current time, we are hearing about resource management and those are informed by scientific inquiry. Science is the answer, but it affects farmers and fishermen and their opinions are often denigrated in favor of science. Science is considered an objective measure, but it is really a cultural decision. Practitioners of science not only need to communicate their values, but they need to listen.

Matt and the 2016 History of Science cohort enjoy a day in the sun in Seattle at an Environmental Humanities Conference

Matt and the 2016 History of Science cohort enjoy a day in the sun in Seattle at an Environmental Humanities Conference

Tune in Sunday, July 3rd at 7PM PDT on 88.7FM or live stream to hear Matt talk about his journey with the history of science and science communication.

The Earliest X-file: Mysterious Killer of the Tudor Era

Edwin, Ed, Wollert hails from the History of Science Department in Oregon State’s School of History, Philosophy, and Religion. Ed is a third year PhD student and is currently preparing his dissertation. His topic? A mysterious disease that affected Europe during the reign of House Tudor. Symptoms include: an intense episode of chills, giddiness, and pain followed by a stage of perceived heat, sweating, headache, delirium, unquenchable thirst, and exhaustion. Fatalities from this disease were swift with many deaths occurring within twenty-four hours. The unknown killer still evades historians today and is known as Sweating Sickness.

After pouring over documents at the British Library and National Archives last summer, Ed visited The George and Pilgrims Inn in Glastonbury. This is the site where the local abbot had to face the wrath of Henry VIII during the dissolution of the monasteries in the 1530s...

After pouring over documents at the British Library and National Archives last summer, Ed visited The George and Pilgrims Inn in Glastonbury. This is the site where the local abbot had to face the wrath of Henry VIII during the dissolution of the monasteries in the 1530s…

Imagine the challenge of studying a disease that has not affected Europe since its last outbreak in 1551. In his research, Ed works as a detective slowly uncovering clues about Sweating Sickness amid thousands of legal documents. Late fifteenth and early sixteenth century documents were constructed before a published unified code of grammar. Ed sifts through handwritten documents sometimes with a rough guidebook for deciphering vague descriptions of symptoms piecing together a possible agent or vector in retrospect.

Ed has dabbled in just about every field and his academic journey has lead him to many different locations around the United States and Internationally. He describes his pursuit of history as obeying an annoying curiosity. Originally trained in Philosophy with Bachelor’s and Master’s degrees from midwestern universities, Ed has served the past 13 years as an adjunct professor in Philosophy at the University of Alaska, Anchorage. That’s not all, he has a second Master’s in Medieval History from American Public History, and has authored two novels. When applying to Oregon State for his PhD, Ed came prepared with a proposal to ignite the curiosity of his major advisor Paul Kopperman. And the rest… is history.

Tune in to KBVR Corvallis 88.7 FM this Sunday at 7PM PST to hear from a true detective or stream the show live.