Category Archives: Forestry

A bird’s eye view: hindsight and foresight from long term bird surveys

The Hermit Warbler is a songbird that lives its life in two areas of the world. It spends its breeding season (late May-early July) in the coniferous forests of the Pacific Northwest (PNW) and migrates to Central America for the winter. Due to the long journey from the Central America to the PNW, it is dependent on food resources being available throughout its journey and when it arrives to breed. The environmental conditions across its range are tightly linked to habitat resources, and unfavorable climatic conditions, such as those becoming less frequent due to climate change, can negatively affect bird populations. Changes in bird populations are not always easy to notice, especially with small songbirds that live high in tree canopies. Studying birds for one or a few years may not be enough to signal the change in their well-being.

A Hermit Warbler singing on a lichen-covered branch in the forest canopy. Male Hermit Warblers will defend their territories ferociously against other males during the breeding season. H.J. Andrews Experimental Forest, May 2017.

Fortunately, long term data sets are becoming more available thanks to long term study programs. For example, the Willamette National Forest in Oregon is home to H. J. Andrews Experimental Forest (the Andrews). Designated by the USDA Forest Service Pacific Northwest Research Station, the Andrews forest hosts many forest research projects and has been monitored since 1948. In 1980, it was became one of the National Science Foundation’s Long Term Ecological Research sites ensuring that it will remain a resource for scientists for years to come. Bird surveys at the Andrews began 11 years ago, and researchers at Oregon State University are beginning to draw connections between changing climate and bird communities in relation to the forest’s structure and compositions.

H.J. Andrews Experimental Forest, where long-term bird study is launched in 2009 by Drs. Matt Betts and Sarah Frey. The forest sits on the moist foothills of western Cascades in Willamette National Forest.

One of these researchers, Hankyu Kim PhD student in the Department of Forest Ecosystems and Society, is using this data to study the Hermit Warbler and other bird species at the Andrews. Hankyu is interested in how and why bird communities are changing over time. With 11 years of bird observations and extensive temperature data, he is attempting to estimate how population of birds persist in the forests. To begin approximating how current climate effects birds, we need to have an idea about bird communities in the past. Past conditions can help us explore how birds might respond to future climate scenarios. Without the effort of many researchers before him to monitor birds, his investigation would be impossible.

Bird surveys are conducted via point counts. Researchers stand at a point count station for 10 minutes and count all bird species they see and hear. Listen to a hermit warbler and some other background birdsongs recorded at H.J Andrews in June 2017.

Hankyu realized the importance of long-term data after reviewing the 45-years of wintering waterbird surveys collected by the Birdwatching Club at Seoul National University, Korea during his time as an undergrad. The group took annual trips to the major Rivers and Coastal Areas, and in just a couple decades the members of the club had recorded declines and disappearances of some species that were once common and widespread. This finding inspired Hankyu to pursue graduate school to study unnoticed or uncharismatic species that are in danger of decline. Every species plays a critical role in the ecosystem, even if that role has not yet been discovered.

Tune in on Sunday May, 19 at 7 pm to hear more about Hankyu Kim’s research with birds. Not a local listener? Stream the show live or catch up when the podcast episode is released.

Want more about the Hermit Warblers in Oregon? Check out this video of Oregon Field Guide featuring Hankyu and some of his colleagues from Oregon State University.

Who Runs the World? Exploring Gender Diversity in the Forest Sector

The following article was written by Pipiet Larasatie and edited by Kristen Finch.

Pipiet Larasatie is a third year PhD student in Wood Science and Engineering Department, College of Forestry, at Oregon State University. Her friends and close colleagues describe her as “Ms. Social” and “Ms. Doing-All.”

And she is! Pipiet is currently involved with four research projects and has standing on four committees at the Department and College level (e.g. College of Forestry’s Diversity Equity Inclusion Committee). Additionally, she is a digital communications coordinator for the International Society of Wood Science and Technology. One of her initiatives is #WomenInWoodScience or a network for women who are associated with wood science.

Pipiet working in the Forest Sciences Dept. University of Helsinki in 2017.

As a woman and a first generation student in her male dominated family, Pipiet has a high passion on empowering young females. For this reason, Pipiet switched her research focus from wood centric to gender diversity in the forest sector.

So far, Pipiet’s research involved collaboration with folks at OSU (her advisor and a Master’s student), but also international collaboration with a professor and a Master’s student in University of Helsinki, Finland. During this part of the project, the team interviewed female executives in the global forest sector companies about gender aspects in the North American and Nordic industries. Some trends became apparent across interview responses. Their respondents agreed that the North American and Nordic forest sector is a historically male-oriented and male-dominated industry, which can lend itself to characteristics of a chauvinistic and masculine culture. This also was clear: to be successful in the male-dominated work setting, young females need a support on multiple levels e.g. good bosses/leaders, mentors, and networks. The interviewees also voiced that education is important when finding a niche in the workplace and for making young females more competitive in the job market. 

Pipiet with one of her mentees joining a faculty led summer course, “The Forest Sector in Alpine Europe.” Photo shows group at University of Primorska, Slovenia.

Tune in to KBVR Corvallis 88.7FM to hear our special segment with Pipiet at 7 pm on March 3, 2019. Pipiet present her research findings alongside pop songs from Beyoncé and Alicia Keys. Later, Pipiet will be accompanied by one of her mentees, Taylor Barnett, a third year undergraduate student studying Natural Resources at College of Forestry. Taylor will share her experience with mentorship programs at OSU and how these mentorship has aided her professional development.

Not a local listener? No sweat! Stream the show live or check out the podcast version of this special episode.

The Sights and Sounds of Purple Martins

The aesthetic beauty and spiritual connectivity the Native Americans have to the Purple Martin is undeniably strong, it’s no wonder the general public have embraced this special bird and encouraged their presence by adding nest boxes in their backyards. However, it’s this strong embrace in urbanized areas that could be stifling the ability for these animals to find and utilize forest habitats that could be spelling trouble for the birds’ future success. Currently the Purple Martin is listed in the state of Oregon as a “Sensitive-Critical Species” and our guest Lorelle Sherman, a 2nd year Masters student in the Department of Forest Ecosystems and Society, is going to help us understand how humans have possibly altered their natural tree-nesting behavior of the Purple Martin population.

Male Purple Martins who are the largest birds in the Swallow group. Photos curtsey of the Cornell Lab of Ornithology

These are birds with an eye-popping iridescent blue-purple body, sleek black wings with a forked tail that aid in its magnificent maneuverability allowing them to fly at speeds of 45 mph or faster. The Purple Martins often nest in groups to help protect each other from predators, their colonial personalities help generate southing chitchat between birds, and they’re very happy to live in artificial nest boxes. So much so that on the east coast of the US they live almost exclusively in bird boxes. Therein lies the problem – these birds are common on the east coast because they completely depend on habitat provided to them by humans; some researchers worry they have lost the generational knowledge of going to the forest to find suitable homes. Conversely, along the west coast of the US they generally utilize cavities in snags (standing dead trees) as their nesting site, but adding backyard bird boxes for the Purple Martin are becoming more common.

Purple Martin in a natural tree snag (standing dead tree) habitat.

Purple Martins are aerial insectivores meaning they only eat insects while they are in flight. Here is a classic yummy meal for the bird.

Although humans are supplementing places for these birds to nest, high quality habitat in forested areas are shrinking because our natural ecosystems are in peril. Purple Martins have historically depended on wildfires to clear open areas for better hunting grounds, but with the onset of fire-suppression efforts across the west these birds are more reliant on clearcuts typical of industrial forestlands. Couple these regional patterns with the recent global finding that flying insect populations (Martins’ food source is exclusively from eating insects while in-flight) in the tropics are expected to decline as much as 20%, and from 1989-2016 German nature preserves have documented a 75% decline flying insects biomass. It’s no surprise that aerial insectivores being the most rapidly declining group of birds in North America. If scientists are to better understand avian populations, the habitat qualities and the relative availability of food necessary for their survival must be assessed simultaneously.

Lorelle is banding a Purple Martin near a wetland to be able to track it’s movements in the future

Lorelle will help us untangle the effects of declining insect populations, possibly driven by a warming climate, and overlay those links with how humans on the west coast are putting up more artificial bird boxes making it easier to for birds to disregard forests as potential habitat all together. She is slowly uncovering the hidden elements of these critical birds by studying the food sources in two different habitats, an upland forest and along waterways with artificial bird boxes, and the birds’ willingness to seek out ideal habitat. Lorelle has grown up infatuated by birds her whole life, often running away from home just to sit underneath a tree to observe her flying friends overhead. At the age of eight her parents got her binoculars to cultivate her love of birds that she carried through her undergraduate research experiences in Vermont studying Double-crested Cormorants and Great Horned Owls. After a landing a dream job at a non-profit focusing on environmental education and green infrastructure in Pennsylvania she decided it was a good time to return to school to pursue a graduate degree. She originally moved to Oregon to work at the Bandon National Wildlife Preserve, but is now a Masters Student with Dr. Joan Hagar while continuing her outreach activities volunteering for birding festivals such as the Oregon Shorebird Festival and the Birding & Blue Festivals. In her free time you can find Lorelle running away from the office and searching for mushrooms, wild edibles, or other elusive birds.

Join us Sunday October 21st at 7PM on 88.7FM, or listen live, to learn more about Purple Martins and how these birds are intimately tied to the natural ecosystems around us as well as the urbanized spaces we occupy together.

Lorelle at the age of 8 continuing her passion for the outdoors with with her grandfather; note the binoculars which were one of the many steps to foster her love for birds.

Stream ecosystems and a changing climate

Examining the effect of climate change on stream ecosystems

Oak Creek near McDonald Dunn research lab. The salamander and trout in the experiments were collected along this stretch of creek.

As a first year Master’s student in the lab of Ivan Arismendi, Francisco Pickens studies how the changing, warming climate impacts animals inhabiting stream ecosystems. A major component of stream ecosystem health is rainfall. In examining and predicting the effects of climate change on rainfall, it is important to consider not only the amount of rainfall, but also the timing of rainfall. Although a stream may receive a consistent amount of rain, the duration of the rainy season is projected to shrink, leading to higher flows earlier in the year and a shift in the timing of the lowest water depth. Currently, low flow and peak summer temperature are separated by time. With the shortening and early arrival of the rainy season, it is more likely that low flow and peak summer temperature will coincide.

A curious trout in one of the experimental tanks.

Francisco is trying to determine how the convergence of these two events will impact the animals inhabiting streams. This is an important question because the animals found in streams are ectothermic, meaning that they rely on their surrounding environment to regulate their body temperature. Synchronization of the peak summer temperature with the lowest level of water flow could raise the temperature of the water, profoundly impacting the physiology of the animals living in these streams.

 

 

How to study animals in stream ecosystems?

Salamander in its terrestrial stage.

Using a simulated stream environment in a controlled lab setting, Francisco studies how temperature and low water depth impact the physiology and behavior of two abundant stream species – cutthroat trout and the pacific giant salamander. Francisco controls the water temperature and depth, with depth serving as a proxy for stream water level.

Blood glucose level serves as the experimental readout for assessing physiological stress because elevated blood glucose is an indicator of stress. Francisco also studies the animals’ behavior in response to changing conditions. Increased speed, distance traveled, and aggressiveness are all indicators of stress. Francisco analyzes their behavior by tracking their movement through video. Manual frame-by-frame video analysis is time consuming for a single researcher, but lends itself well to automation by computer. Francisco is in the process of implementing a computer vision-based tool to track the animals’ movement automatically.

The crew that assisted in helping collect the animals: From left to right: Chris Flora (undergraduate), Lauren Zatkos (Master’s student), Ivan Arismendi (PI).

Why OSU?

Originally from a small town in Washington state, Francisco grew up in a logging community near the woods. He knew he wanted to pursue a career involving wild animals and fishing, with the opportunity to work outside. Francisco came to OSU’s Department of Fisheries and Wildlife for his undergraduate studies. As an undergrad, Francisco had the opportunity to explore research through the NSF REU program while working on a project related to algae in the lab of Brooke Penaluna. After he finishes his Master’s degree at OSU, Francisco would like to continue working as a data scientist in a federal or state agency.

Tune in on Sunday, June 24th at 7pm PST on KBVR Corvallis 88.7 FM, or listen live at kbvr.com/listen.  Also, check us out on Apple Podcasts!

Comunicación Científica con Franco

Kristen Finch interviewing Francisco Guerrero for this special episode. (Photo by Adrian Gallo)

This week on Inspiration Dissemination we will be featuring a previous guest: Francisco Guerrero, a PhD student in the Department of Forest Engineering, Resources, and Management. Francisco’s first interview aired on October 18, 2015, and we called him back for a follow-up because he has been selected for the American Association for the Advancement of Science (AAAS) Mass Media Science and Engineering Fellowship. As a fellow, Franco will be writing feature stories about climate change and health for CNN en Español. Part of the fellowship will involve helping with film production, as well. FUN FACT last time Franco was on the show, he told us that he always wanted to be a movie producer. Franco will take this amazing opportunity during the final push for his PhD research to enhance his science communication skills and gain experience in production and video broadcasting.

This special interview will begin at 6:30 pm on May 6, 2018. We will be asking Franco about the application process, his responsibilities as a fellow, and his goals for the fellowship. After our interview with Franco, we will rebroadcast his first interview on Inspiration Dissemination at 7 pm.

Tune in to KBVR Corvallis 88.7 FM at 6:30 pm to hear about the AAAS Fellowship and learn about Franco’s research in the College of Forestry. Not a local listener? No sweat! Stream the show live on line or hear the podcast next week.

Franco wants to hear from you! Tweet him with ideas for CNN Español, specifically stories about Climate Change and Health. 

The folks behind the episode: Francisco Guerrero, Kristen Finch, and Lillian Padgitt-Cobb. (Photo by Adrian Gallo)

Ways and Means: Attitudes Toward Methods of Restoring American Chestnut Trees

“The Christmas Song” or “Chestnuts Roasting on an Open Fire” by Bob Wells and Mel Tormé is an iconic song in American culture, but most Americans will never experience a chestnut roast (at least not with American chestnuts).

A mighty blight

The American chestnut was a widespread North American native tree that covered nearly 200,000 miles of Appalachian forest. In 1904, the American chestnut trees in the Bronx Zoo were dying from a then unknown disease, Chestnut Blight. In the next forty years, Chestnut Blight spread across the estimated 4 billion American chestnut trees. Now American Chestnut trees are seen only as giant stumps, juveniles never reaching maturity, and rarely, adult fruit-bearing trees.

Since the decline of the American chestnut, Appalachian forests have changed. Chestnuts have been replaced by oaks, and it is likely that many organisms that relied on the chestnut trees for food or shelter have had to adapt to new conditions or have been displaced. The loss of the chestnut also led to the loss of financial income for many Appalachian people. In addition to chestnuts as a food source, the American chestnut provided decay resistant timber and tannins for tanning hide. The American chestnut and its decline is remembered through oral and written history. Members of older generations from Appalachia tell stories of enormous trees and later forests of white wooden chestnut skeletons.

Restoring the chestnut

Josh skiing in the mountains of Big Sky, Montana.

The restoration of the chestnut is an active project that faces many challenges. First, few Americans have seen an American chestnut tree, and few are familiar with their decline via Chestnut Blight. Since the restoration of the American chestnut would require policy changes and action across 200,000 miles, spanning multiple state governments, it is necessary to assess the extent the public might disfavor or favor this restoration. Our guest this week,Josh Petit from Forest Ecosystems and Society, is seeking to understand the attitudes of Americans toward the chestnut restoration. In particular, Josh is surveying a sample of the US population to compare attitudes toward a controversial method of chestnut restoration,  the use of genetic engineering.

Ways and Means

You may be familiar with genetic engineering to modify the genome of an organism to achieve a specific goal. Many of the crops we eat have in some way been modified to aid harvest, growth, and/or resistance to pests and disease. The methods for restoring the American chestnut are:

  • Selective breeding with related, blight-resistant Asian chestnuts
  • Modifying the genome of American chestnuts with Asian or other related chestnut genes (cisgenics)
  • Modifying the genome of American chestnuts with foreign genes or genes from wheat (transgenics)

Josh conducting research during a study abroad program in tropical North Queensland, Australia.

It is important to assess the attitudes of the public to transgenics because the introduction of  genes from wheat has been the most successful method at enhancing resistance toward chestnut blight. Recently, negative media has led to the misunderstanding that genetically modified organisms (GMOs) have adverse effects on consumers (humans) and ecosystems. However, these claims are not based in sound science and have been refuted. Although GMOs are being supported as alternatives to crop and forest species extinction, ultimately chestnut restoration relies on majority vote in favor or against a specific strategy. Thus, assessing attitudes toward restoration methods is tantamount to restoration efforts.

The Guy for the Job

A native of Ohio, Josh Petit attended Xavier University and majored in Political Science. He credits a Semester at Sea for broadening his world view and exposing him to different cultures. He learned that culture is important in all aspects of daily life. In retrospect, perhaps it is no surprise that he is currently studying an iconic tree and how culture has driven attitudes toward its restoration.

Josh participating in a Fijian traditional village celebration and homestay–taking turns playing guitar.

Josh became interested in ecology, biology, and the interface of the two with humans while working for Q4 International Marketing an ecotourism company in Panama. This lead him to pursue a Master’s in Natural Resources with a marine ecology focus from Virginia Tech. However, his most recent work withOregon Parks and Recreation Department lead him to pursue a PhD at Oregon State University. With the State Parks, Josh conducted surveys in Oregon Parks and sought to connect behavior, impacts, and social science to ecology and recreation. Now at Oregon State University, Josh is working with Mark Needham andGlenn Howe to understand the drivers of attitudes toward using biotechnologies for restoring American chestnut trees.

Hear more about Josh’s research and his journey to now this week on Inspiration Dissemination. Tune in to KBVR Corvallis 88.7FM on Sunday July, 30 at 7 pm, or live stream the show.

Horse Farms to Tree Farms: Studying the Relationship Between Land Management and Biodiversity

If you wander forests of the Oregon Coast Range you might encounter a strange sight: exclosures made of timber and steel-braided wire, standing in a clear-cut forest. These exclosures, which stand 100-feet long, 50-feet wide and 8-feet high, are the research and work of Thomas Stokely, a PhD candidate in the department of Forest Ecosystems & Society in the College of Forestry. The exclosures were constructed to study the impact of deer and elk grazing on tree growth, and to address a larger research question in forestry management: What does intensive forest management mean for biodiversity?

Completion of exclosure construction in the Oregon Coast Range

Completion of exclosure construction in Oregon Coast Range

To study the impact of deer and elk on commercial tree growth, Thomas constructed constructed 28 stands in which a team of researchers manipulated the intensity of herbicide spray treatments in each area (non-sprayed, light, moderate and intensive herbicide treatments). For six years, under the direction of his adviser Matthew Betts, Thomas and has measured plant communities, arthropods, herbivory and plantation development inside these exclosures and in open plots where wildlife is allowed free access.

Thomas Stokely cutting fence rows through logging slash and large stumps to construct wildlife exclosures

PhD student, Thomas Stokely cutting fence rows through logging slash and large stumps to construct wildlife exclosures

The exclosure research in the Oregon Coast Range relates to Thomas’s goals as a scientist who’s invested in understanding how industry impacts biodiversity. “As the world population grows, we need more resources,” he said. “We want to value the product, but we also value biodiversity and wildlife habitat. Is there a way we can manage for both timber production and wildlife habitat? If so, what role do biodiversity and wildlife play in the management of natural resources? If management alters biodiversity or excludes wildlife, what are the implications for ecosystem functioning?” These are questions that continue to drive his research and his career path.

Mature Roosevelt elk bulls browsing through a plantation with exclosure in the background

Mature Roosevelt elk bulls browsing through a plantation with exclosure in the background

Thomas has been interested in plant-animal interactions and the environment since he was a child. Growing up on a horse farm in southwest Missouri, he watched horses grazing and wondered about their relationship with the habitat in and around the farm. He first considered studying the policy side of humanity’s relationship with the natural world, but political science wasn’t a good fit—he wanted to pursue a more hands-on approach to studying biodiversity. After reading about the reintroduction of wolves in Yellowstone, he knew he wanted to work directly with land and habitat management. He earned a BS in environmental science at University of Missouri before coming to Oregon State. Upon completing his PhD, Thomas plans to work in applied ecology where he hopes to use science to guide land management and conservancy practices.

Tune in to hear our conversation with Thomas Stokely on Sunday, November 13th at 7:00 pm on 88.7 FM KBVR Corvallis or listen live online

Mosquito soup in the Brazilian rainforest

Fieldwork in the Brazilian Amazonia meant continuously trying to outsmart their savviest opponents…ants!

Fieldwork in the Brazilian Amazonia meant continuously trying to outsmart their savviest opponents…ants!

Deforestation in Brazil due to cultivation of monoculture crops, such as soybean, has profoundly impacted wildlife populations. In the lab of Taal Levi in the Department of Fisheries and Wildlife, wildlife biologist Aimee Massey has adopted a quantitative approach to studying this impact. During her first and second year of graduate school, Aimee traveled to Brazil for fieldwork and data collection, collaborating with researchers from Brazil and the UK. During this trip, she collected 70,000 biting flies, including mosquitoes and sandflies, by engineering 200 fly traps constructed from 2-liter soda bottles, netting, and rotting beef. Aimee installed biting traps throughout 40 individual forest patches, which are regions delineated by their physical characteristics, ranging approximately in size from the OSU campus to the state of Rhode Island.

Who knew fieldwork could be such a balancing act?!…especially when trying to avoid poisonous insects and thorns. Let’s hope the next branch Aimee reaches for is not of the slithering snake kind!

Who knew fieldwork could be such a balancing act?!…especially when trying to avoid poisonous insects and thorns. Let’s hope the next branch Aimee reaches for is not of the slithering snake kind!

Subsequent DNA analysis on biting flies provides a relatively unbiased source of wildlife tracking, since mosquitoes serve as a repository of DNA for the wildlife they have feasted upon. DNA analysis also provides information regarding diseases that may be present in a particular patch, based on the bacterial and viral profile. For example, sandflies are carriers of protozoa such as leishmania, which cause the disease leishmaniasis. To analyze DNA, Aimee uses bioinformatics and metabarcoding, which is a technique for assessing biodiversity from an environmental sample containing DNA. Different species of animals possess characteristic DNA sequences that can be compared to a known sequence in an online database. By elucidating the source of the DNA, it is possible to determine the type of wildlife that predominates in a specific patch, and whether that animal may be found preferentially in patches featuring deforestation or pristine, primary rain forest.

Learning about human/wildlife interactions while drinking tea with camel’s milk in Laikipia, Kenya.

Learning about human/wildlife interactions while drinking tea with camel’s milk in Laikipia, Kenya.

Aimee completed her undergraduate studies at University of Maine, where she quickly discovered she wanted to study biology and chemistry in greater depth. She planned to attend med school, and was even accepted to a school in her junior year; however, an introductory fieldwork course in Panama spent exploring, doing fieldwork, and trekking made a deep impression on her, so she decided to apply to graduate school instead. Aimee completed a Masters degree in environmental studies at the University of Michigan, during which time she spent 4 months at the Mpala Research Centre in the middle of the Kenyan plateau, just north of the Masai Mara. Following completion of her Masters degree, Aimee spent a year as a research assistant at the University of New Hampshire working with small mammals. Before beginning her PhD studies at OSU, Aimee spent two months in Haines, Alaska doing fieldwork with her future PI, Taal Levi. After she finishes her PhD, Aimee plans to focus on conservation work in New England where she is originally from.

Having fun after fieldwork; Aimee’s eulachon fish catch of the day in Haines, Alaska. One is better than none!

Having fun after fieldwork; Aimee’s eulachon fish catch of the day in Haines, Alaska. One is better than none!

Tune in on October 23rd, 2016 at 7PM on the radio at 88.7FM KBVR, or stream live, to hear more about Aimee’s adventures in Brazil, and why her graduate work is shaping our understanding of how deforestation impacts biodiversity.

 

Helping People, Help Rhinos

Group-photo

Left to Right: Andrea, Kyle Armstrong, and Karissa Bernoth blow off some steam during a particularly tough day in the field.

The path to one’s dreams is never a straight line. Along the way, we often run into speed bumps, detours, and of course, roadblocks. The people who make it to their final destination in life are often those who just can’t forget about that childhood dream. Andrea Kuchy is certainly that kind of person. From a young age, Andrea dreamed of traveling to Africa to study the wildlife that roam there. Unfortunately, most American universities don’t have an African wildlife major, so Andrea had to pave her own path. Her route through undergraduate involved multiple schools and a lot of time spent outside of the classroom. Throughout this multitude of experiences, Andrea was able to get involved in travel abroad in Africa to study wildlife and conservation in Tanzania. Then she got a job as undergraduate field researcher in Alaska studying climate change. It was these non-traditional experiences that really brought out Andrea’s passion for the natural world and eventually, brought her back to Africa for a post-graduate diploma in Johannesburg. Andrea was finally on the path she always felt she belonged on.

Rhino-capture2

A rhino capture in a game reserve

It’s a good thing that Andrea never gave up on her dream of studying African wildlife because they could really use some help lately. Today, Andrea is working with Mark Neeham in the Department of Forest Ecosystems and Society,  trying to understand the motivations of people involved in rhinoceros poaching, and those trying to stop it, in South Africa. Over the past eight years, rhinoceros poaching has been on the rise despite newly implemented policies and interventions. In this case, the rhinoceros aren’t the only ones in danger; many park rangers, police officers, workers at reserves, and even farmers have come under attack by poachers lookingRhino-captured for weapons and rhino horns. Andrea is hoping that a scientific approach can bring the situation under control. She is compiling data on poaching, interviews with people involved, and conducting a thorough review of the history on rhinoceros poaching. For the sake of the all the people involved and the rhinoceros, Andrea’s research results can’t come soon enough.

Tune in this Sunday, May 29th at 7pm PST to hear Andrea tell us all about the plight of the rhinoceros on 88.7 KBVR.

Earth, Water, and Fire (& Politics too)

What does it mean to be at the intersection of science, policy, philosophy, and cultural norms? This week our guest Brian Trick, a Masters student in the College of Forestry, will discuss some tremendous hurdles we Oregonians have with how we perceive and need healthy forests for the most important resource of all.

Sometimes you get sent out on a fire, spend two days on it, and then it rains on you. Trying to stay warming until it's time to leave. This my best Wilson brother, "behind enemy lines" look.

Sometimes you get sent out on a fire, spend two days on it, and then it rains on you. Trying to stay warm until it’s time to leave. This is my best Wilson brother, “behind enemy lines” look.

We need water to live; considering Oregon receives about 80% of its freshwater from forests it only makes sense to protect areas that carry water from mountaintops to our taps. There are federally mandated safety boundaries (riparian buffers) that surround rivers and streams in forests applied on public and private lands alike. These buffers restrict activity to help minimize erosion losses, temperature spikes in water, as well as sediment and chemical inputs to keep ecosystems functioning. Most of the water purification process happens (literally) upstream. Research projects suggest larger riparian areas will keep ecosystems functioning at a higher level; perfect you might think, lets make the riparian buffers extra wide right?

Not so fast, what happens if you own a small parcel of forest and there are so many streams the riparian buffers prevent you from doing anything on your own property? How much of a buffer zone around a stream is needed for a healthy ecosystem, while simultaneously allowing small land-owners to manage forests? Can we arrive at a ‘one size fits most‘ for protected riparian areas? This is policy at its best, if it works!

This is a complicated intersection of forest management and domestic policy and Brian Trick will help discuss some current events and what this could mean for a judicial precedent. In the event we help Brian save the riparian-buffer world, we’ll also delve into his upcoming job as a Forest Service smokejumper, but don’t worry this isn’t the first time he’s jumped out of aircrafts!

Tune in on Sunday, March 27th at 7PM PST on 88.7 FM in Corvallis or stream us online at http://kbvr.com/listen to hear exactly why Brian is (literally) a Hotshot!

Brian working for the USDA Forest Service in a rappel operation located in Salmon, ID.

Brian working for the USDA Forest Service in a rappel operation in Salmon, ID.