Category Archives: College of Engineering

This time, it actually is rocket science: computational tools for modeling combustion

A.J. Fillo is in his final year of his PhD in Mechanical Engineering in the School of Mechanical, Industrial, and Manufacturing Engineering, within the College of Engineering. Working with Dr. Kyle Niemeyer. A.J. is studying combustion, or how things burn; specifically, A.J. is working to better understand how the microscopic motion of molecules impacts the type of combustion that we use in jet engines.

From A.J.’s masters work, and an photo-art series A.J. did on combustion, Turbulent, premixed jet fuel air Bunsen burner with a fuel rich jet fuel air flame. Fuel is commercially available ‘Jet-A.’ Photo shot at 1/8000 second shutter speed and aperture of f/2.8

            To understand combustion, first it’s helpful to understand energy.  If you drop a ball at the top of a hill, it will roll to the bottom, if you place a tea bag into a hot glass of water, the flavors will move through the water until you have tea. Both of these processes take something from its high energy state, to a more stable lower energy state. In our tea cup, molecular diffusion is what moves that energy around. Diffusion is the process of molecules becoming evenly dispersed by moving from high to low concentration and happens at very small scales, and affects everything around us including the combustion that we use in jet engines.

Diffusion is only part of the story though.  In fluid mechanics, the study of how gasses and liquids move around, diffusion controls the smallest aspects of motion but what processes control motion on a larger scale? To answer that A.J. used the example of an airplane wing. In physics class, many of us have seen a drawing or a demonstration of an airplane wing with smooth streaks of air flow over it, we call those smooth air streaks streamlines.  These smooth streamlines represent something called laminar flow, which is very smooth and predictable, but fluid flows are rarely predictable, usually they are swirly, changing, and chaotic.  These chaotic flows are called turbulence and exist all around us, they cause planes to bounce around when we fly through rough air, they drive the little vortex tornado the forms when our sink drains, and they can even impact the motion, structure, and chemistry of a jet fuel flame.

2D slice of a 3D simulation results for a turbulent, premixed, n-heptane air flame looking at flame temperature. Flow is from left to right.

Both turbulence and diffusion work to move energy around in combustion, but we don’t yet have a firm understanding of how these two different processes interact to control the combustion we use to propel us through the air.

Turns out, flames are hard to study because as you can imagine, anything you would use to measure a flame, does not want to be in a flame; measurement tools like thermocouples and pressure transducers can melt, or even combust themselves.  But there is another tool at our disposal.  We can use super computers to simulate how combustion is happening in jet engines and even use it to study how turbulence and diffusion interact, or how molecules are moving around during combustion.

From A.J.’s masters work, and an photo-art series A.J. did on combustion, Turbulent, premixed jet fuel air Bunsen burner with a fuel lean jet fuel air flame. Fuel is commercially available ‘Jet-A.’ Photo shot at 1/8000 second shutter speed and aperture of f/2.8

A.J.’s research focuses on developing computational tools to look at these effects. The sum total of reactions happening during jet fuel combustion are large and complex, meaning that the equations are not easy to solve, and trying to do so can take thousands of computer cores for several days. By developing a more efficient computer algorithm to look at these reactions we can make these simulations faster, more efficient, and less expensive.

In reality, Jet fuel is a mixture of hundreds of different chemicals, so to simplify things, A.J. uses fuels like hydrogen (H2), n-heptane (H3C(CH2)5CH3), and toluene (C6H5CH3) as representative fuels. Although a single, simpler compound, even as simple as just hydrogen, has hundreds of chemical reactions and dozens of different radical molecules that form during its combustion. To get around the limitation of computer memory and speed up how quickly his simulations run, A.J. created an algorithm to optimize how the computer handles the math to make sure things run as smoothly as possible.  You can think of it a bit like going to the DMV, usually the line takes forever because people are rarely ready with their paper work in hand when they get to the front of the line, instead people must get out of line, get more paper work, and start over.  Using this analogy, A.J.’s algorithm works to make sure everyone in line arrive with their paper work completed, ready to hand off, and let the next person through. This reduces dramatically reduced the amount of computer memory needed to solve these combustion simulations and speeds up the math.

3D simulation results for a turbulent, premixed, hydrogen air flame looking at peak flame temperature colored by chemical composition. Flow is from back to front

A.J. became interested in mechanical engineering because of his love of magic. A.J. started his academic journey at the University of Missouri Columbia as a journalism major but transferred to OSU for the engineering program. A.J. has always loved performing, which is why science outreach has been such a large part of his graduate school experience. Partnered with the Corvallis Public Library, A.J. hosts LIB LAB, a hands-on multimedia educational YouTube series focused on STEAM (science, technology, engineering, arts, and mathematics) education, which he previously talked about on our GRADx event.

A.J. standing with the Oregon State University Drumline in OSU’s Reser Stadium while filming an episode of his YouTube show LIB LAB about vortex smoke rings.

To find out more about A.J.s research, outreach, and journey to grad school, join us on Sunday, May 12 at 7 PM on KBVR Corvallis 88.7 FM or stream live.

 

Improving hurricane prediction models using GPS data

GPS satellites orbiting the Earth

Exploiting a flaw in the system

GPS was originally designed for positioning, navigation, and timing (PNT) applications which measures the transmitted time of the radio signals from a satellite in the space to a receiver on the ground. But this story is not about improving GPS accuracy in navigation applications, rather it is a clever use of the GPS signal delay to collect data for monitoring the atmosphere for use in weather event predictions.

The transmitted GPS signal contains not only the range information, which is the primary factor of interest, but also error sources, such as atmospheric delay including tropospheric delay. The delay in GPS signals reaching Earth-based receivers due to the presence of water vapor is nearly proportional to the quantity of water vapor integrated along the signal path.

GPS is capable of seamless monitoring of the moisture in the atmosphere with high temporal and spatial resolution. Excellent GPS data availability enables unique opportunities for data analysis and experimental studies in GPS-meteorology.

This week’s guest, Hoda Tahami, is a third year PhD student in Dr. Jihye Park’s geomatics research group in the Department of Civil and Construction Engineering. Using geomatics – the science of gathering, storing, processing, and delivering spatially referenced information – Hoda is working to improve weather models for hurricane prediction.

GPS Meteorology: Estimating vertically integrated atmospheric water vapor, or perceptible water, from Global Positioning System (GPS) radio signals collected by a regional network of ground-based geodetic GPS receiver.

Using GPS signal data for hurricane prediction

Data from Hurricane Matthew that hit Florida in 2016 has been used to explore the idea of using GPS data to predict the path and intensity of hurricanes. “I found a clear correlation between [signal delay] and other atmospheric variables, like temperature, precipitation, and water vapor,” says Hoda. This information can be used for weather models, which rely on quality observational data. Weather models are computer programs that apply physics to observations to make predictions. The set of observations forming the starting point for the model simulation are called the initial conditions. Hoda hopes that this new set of data can be used as an initial condition for existing atmospheric models.

This new set of GPS-based data provides an increase in temporal and spatial resolution. While many satellite data sources provided data every few hours or even just once or twice a day, Hoda explains, “The time scale in my data is in seconds. We average it to five minutes, then use it to make one to twenty-four hour predictions.” This new set of data can be used to complement existing data sets – each with their own caveats – used by agencies like the National Hurricane Service, National Oceanic and Atmospheric Administration (NOAA), and the National Weather Service.

More information about the proposed model can be found at: https://www.ion.org/publications/abstract.cfm?articleID=15074

Hoda Tahami with her poster at the Graduate Research Showcase at Oregon State University

Finding a love for geospatial research

Hoda began her career in civil engineering with a bachelor’s degree at K. N. Toosi University of Technology in Tehran, Iran. This was Hoda’s first experience with geospatial data and geographic information systems (GIS), which piqued her interest and led her to pursue a Master’s degree specializing in GIS. Due to the state-of-the-art geospatial research resources available, Hoda chose to pursue her doctorate degree at Oregon State.

Join us on Sunday, May 5 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Hoda’s geospatial research and journey to graduate school.

Learning without a brain

Instructions for how to win a soccer game:

Score more goals than your opponent.

Sounds simple, but these instructions don’t begin to explain the complexity of soccer and are useless without knowledge of the rules of soccer or how a “goal” is “scored.” Cataloging the numerous variables and situations to win at soccer is impossible and even having all that information will not guarantee a win. Soccer takes teamwork and practice.

Researchers in robotics are trying to figure out how to make a robot learn behaviors in games such as soccer, which require collaborative and/or competitive behaviors.

How then would you teach a group of robots to play soccer? Robots don’t have “bodies,” and instructions based on human body movement are irrelevant. Robots can’t watch a game and later try some fancy footwork. Robots can’t understand English unless they are designed to. How would the robots communicate with each other on the field? If a robot team did win a soccer game, how would they know?

Multiple robot systems are already a reality in automated warehouses.

Although this is merely an illustrative example, these are the types of challenges encountered by folks working to design robots to accomplish specific tasks. The main tool for teaching a robot to do anything is machine learning. With machine learning, a roboticist can give a robot limited instructions for a task, the robot can attempt a task many times, and the roboticist can reward the robot when the task is performed successfully. This allows the robot to learn how to successfully accomplish the task and use that experience to further improve. In our soccer example, the robot team is rewarded when they score a goal, and they can get better at scoring goals and winning games.

Programming machines to automatically learn collaborative skills is very hard because the outcome depends on not only what one robot did, but what all other robots did; thus it is hard to learn who contributed the most and in what way.

Our guest this week, Yathartha Tuladhar, a PhD student studying Robotics in the College of Engineering, is focused on improving multi-robot coordination. He is investigating both how to effectively reward robots and how robot-to-robot communication can increase success. Fun fact: robots don’t use human language communication. Roboticists define a limited vocabulary of numbers or letters that can become words and allow the robots to learn their own language. Not even the roboticist will be able to decode the communication!

 

Human-Robot collaborative teams will play a crucial role in the future of search and rescue.

Yathartha is from Nepal and became interested in electrical engineering as a career that would aid infrastructure development in his country. After getting a scholarship to study electrical engineering in the US at University of Texas Arlington, he learned that electrical engineering is more than developing networks and helping buildings run on electricity. He found electrical engineering is about discovery, creation, trial, and error. Ultimately, it was an experience volunteering in a robotics lab as an undergraduate that led him to where he is today.

Tune in on Sunday at 7pm and be ready for some mind-blowing information about robots and machine learning. Listen locally to 88.7FM, stream the show live, or check out our podcast.

Don’t just dream big, dream bigger

If you’ve purchased a device with a display (e.g. television, computer, mobile phone, handheld game console) in the last couple decades you may be familiar with at least some of the following acronyms: LCD, LED, OLED, Quantum LED – no, I did not make that up. Personally, I find it all a bit overwhelming and difficult to keep up with, as the evolution of displays is so rapidly changing. But until the display replicates an image that is indistinguishable from what we see in nature, there will always be a desire to make the picture more lifelike. The limiting factor of making displays appear realistic is the number of colors used to make the image. Currently, not all color wavelengths are used.

Akash conducting research on nanoparticles.

This week’s guest, Akash Kannegulla studies how light interacts with nanostructure metals for applications to advance display technology, as well as biosensing. Akash is a PhD candidate in the Electrical Engineering and Computer Science program with a focus in Materials and Devices in the Cheng Lab. Exploiting the physical and chemical properties of nanoparticles, Akash is able to work toward the advancement of display and biosensing technologies.

When shining light on metals, electrons and photons interact and oscillate to create a surface plasma, or “electron cloud”. Under specific conditions, when fluorescent dye is excited with UV light on the surface plasma, electrons move to higher atomic levels. When the electrons return to lower atomic levels, energy is released in the form of light. This light is 10-100X brighter than it would be without the use of fluorescent dyes. With this light magnification, less voltage is used to produce a comparable brightness level. This has two main benefits; first consumer products can use less energy to produce the same visual experience, so we can significantly decrease our carbon footprint. Second, these unique conditions can be amplified at the nano-scale, which means smaller pixels and more colors that can be produced so our TV screens will look more and more like the real world around us. These new advancements at the nano-scale have extremely tight tolerances in order for it to work; however, in this case, not working can also provide some incredible information.

This technology can be applied in biosensing to detect mismatches in DNA sequences. A ‘mismatch’ in a DNA sequence has a slightly different chemical bond, the distance between the atoms is ever so slightly different than what is expected, but that tiny difference can be detected by how intense the light is – again the nanoscale is frustratingly finnicky at how precise the conditions must be in order to get the expected response – in this case light intensity. So when we get a ‘dim’ spot, it can be indicative of a mismatched DNA segment! Akash predicts that in a just a few years, this nanotechnology will make single nucleic acid differentiations detectable on with sensing technology on a small chip or using a phone camera, rather than a machine half the size of MINI Cooper.

Akash, the entrepreneur, with his winning certificate for the WIN Shark Tank 2018 competition.

In addition to Akash’s research, he has spent a significant portion of his graduate career investing in an award-winning start-up company, Wisedoc.This project was inspired by the frustration Akash felt, and probably all graduate students and researchers, when trying to publish his own work and found himself spending too much time formatting and re-formatting rather than conducting research. By using Wisedoc, you can input your article content into the program and select a journal of interest. The program will then format your content to the journal’s specifications, which are approved by the respective journal’s editors to make publishing academic articles seamless. If you want to submit to another journal, it only takes a click to update the formatting. Follow this link for a short video on how Wisedoc works. And for those of us with dissertations to format, no worries – Wisedoc will have an option for that, too. Akash notes that Wisedoc would not have been possible without the help of OSU’s Advantage Accelerator program, which guides students, faculty, staff, as well as the broader community through the start-up process. Akash’s team has won the Willamette Innovators Network 2018 Shark Tank competition, which earned them an entry into the Willamette Angel Conference, where Wisedoc won the Speed Pitch competition. If you are as eager as I am to checkout Wisedoc, the launch is only a few months away in December 2018!

The soon-to-be Dr. Akash Kannegulla – his defense is only a month away – is the first person in decades from his small town at the outskirts of Hyberabad, India, to attend graduate school. Akash’s start in engineering was inspired by his uncle, an achieved instrumentation scientist. Not knowing where to start, Akash adopted his uncle’s career choice as an engineer, but took the time to thoroughly explore his specialty options while an undergraduate. A robotics workshop at his undergraduate institution, Amirta School of Engineering in Bangalore, India, sparked an interest in Akash due to the hands-on nature of the science. Akash explored undergraduate research opportunities in the United States landing on a Nano Undergraduate Research Fellowship from University of Notre Dame. During the summer of 2013, Akash studied photo induced re-configurable THz circuits and devices under the guidance of Dr. Larry Cheng and Dr. Lei Liu. Remarkably, Akash conducted research resulting in a publication after only participating in this four-week fellowship. After graduating with the Bachelor of Technology in Instrumentation, Akash decided to come to Oregon State University to continue working with Dr. Cheng as a PhD student.

After defending, Akash will be working at Intel Hillsboro, as well as preparing for the launch of Wisedoc in December. And if that doesn’t sound like enough to keep him busy, Akash has plans for two more start-ups in the works.

Join us on Sunday, July 22 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Akash’s nanotechnology research, start-up company, and to get inspired by this go-getter.

 

Antibiotic resistance: The truth lies in the sludge

 

Genevieve experiencing Vietnamese culture at Sam Mountain in the Mekong Delta

Did you know that about 30% of people here in Oregon have septic tanks? Why is that relevant to this week’s topic you ask? Our guest this week on Inspiration Dissemination, Genevieve Schutzius is an Environmental engineering masters student in the College of Engineering interested in waste water management. Genevieve is working with Dr. Tala Navab-Daneshmand as part of the Navab lab. The lab’s mission is to identify the fate and transmission pathways of pathogenic and antibiotic-resistant bacteria from wastewater systems to environmental reservoirs, and to design engineered systems and interventions to reduce the associated human health risks.

 

 

A beautiful sunrise over the Saigon River in District 4 of Ho Chi Minh City.

Recently, Genevieve spent a term abroad working on a project that is in collaboration with Dr. Mi Nguyen at Nguyen Tat Thanh University in Vietnam. The purpose of the study is to identify the human health risks associated with the spread of infectious bacteria resistant to antibiotics in areas with high septic tank use. Specifically, Genevieve’s project is to identify the fate of antibiotic resistance in soils and waters as recipients of untreated septic sludge.

 

Genevieve sampling a sludge-filled canal using a fashioned “sampling stick” from an abandoned bamboo fishing pole in the northwest of Ho Chi Minh City.

She did this by collecting 55 soil samples from canals, rivers, parks, and fields in Ho Chi Minh City, then plated dilutions of these samples to quantify the number of E. coli, which is a common indicator of fecal contamination. She selected E. coli colonies and brought them back to her lab at OSU, where she performed the disk diffusion method. The disk diffusion method involves plating isolated bacteria across an entire agar plate and see how it grows in the presence of disks containing antibiotics. She tested them against 9 different antibiotics, finding that 69% of 129 isolates were resistant to more than two! She is also conducting a microcosm study to see how resistant bacteria thrives in soils and in different temperature environments. Soon, she will determine the presence of absence of antibiotic-resistant genes in her isolated bacteria using PCR to amplify genes.

Samples mixed with bacteria including chosen E. coli isolates (circled).

Why Vietnam? Well Vietnam has high levels of septic tank use and out of 11 Asian countries surveyed, Vietnam also had the highest levels of antibiotic resistance in patients due to the ease at which they are acquired. A survey Genevieve assisted in implementing while in Vietnam opened her eyes to just how easy it is to get antibiotics and how much they are used among citizens.

 

A plate showing how resistant this particular E.coli isolate is to ampicillin (full resistance), streptomycin (full resistance), gentamicin (mostly resistant), and imipenem (not resistant – “last resort” antibiotic.

 

Originally from Colorado, Genevieve acquired her undergraduate degree in environmental engineering at the University of Colorado Boulder where she became interested in waste water management. She always knew that she wanted to end up in the pacific northwest and after finding out about Oregon State Universities program she decided that the environmental engineering program suited her interests. Following completion of her masters degree she hopes to continue to travel and find work in the humanitarian/non-profit public health and sanitation sector.

In Genevieve’s free time, she enjoys experimenting with her cooking, typically with different types of Indian spices. She also enjoys partaking in activities such as yoga, snowboarding, playing piano, and singing.

 

Tune in to 88.7 FM at 7:00 PM Sunday evening to hear more about Genevieve and her research on antibiotic resistance in areas of high septic tank use, or stream the program live.

This includes you!

A graph illustrating why it is important to incorporate inclusive considerations early in the design process where they will do the most good. If it is kept for a later stage as it generally has been, the products will end up more expensive and less effectively inclusive.

Jessica Armstrong is a PhD candidate in her last year in the Design Core of the Department of Mechanical, Industrial and Manufacturing Engineering working to give product designers more information about customer needs so that they can create a more inclusive product design. Generally, products are conceived out of a need, and their design is based on the eventual user(s). The term inclusive design, similar to universal design, aims to design products for people with a varying range of abilities from the start. Making it possible to incorporate inclusive considerations early in the design process, when they will most benefit the design, and at the lowest cost, is a major part of the work. Jessica’s research goal is to build a framework that designers can follow to allow them to easily design as inclusive products as possible.

A picture of Jessica in the motion restriction suit.

To do this, Jessica, advised by Dr. Rob Stone, uses a motion restriction suit (tested during her M.S. degree at OSU) to test users’ experiences using kitchen gadgets. The suit restricts motion of the upper body by stiffening movements of the fingers, wrists, elbows, abdomen, and shoulder. They are investigating what they have termed “surrogate experiences”, or allowing a research subject (surrogate) to simulate the actual target users and their needs. Jessica is able to record a user’s experience with the kitchen gadget and identify any difficulties in products user interactions, the products actions and design, and the suit’s restriction.

 

 

 

Jessica Armstrong, at her first Design Engineering Technical Conference.

Jessica grew up in Boise, Idaho wanting to become an astronaut. Very much interested in physics and engineering, she moved to Corvallis for her Bachelor’s degree in Engineering Physics. She took a break from studying while her husband worked on his Entomology MS degree at Washington State University. During that time, she worked as a telephone interviewer for WSU’s Social and Economic Sciences Research Center where she interviewed people over the phone for the various studies they were conducting. She then moved back to OSU to pursue her MS and then PhD in Mechanical Engineering, and specifically focusing on design. She acquired a minor in IE Human Systems Engineering, as she finds the human aspect of engineering fascinating. While not working on research, Jessica sings alto and tenor in OSU’s University Choral and is the Treasurer for the OSU Physicists for Inclusion in Science group.

Her interest in space has not dissipated and she aims to work for a private space company after completing her degree. She hopes her doctoral research will eventually be used to encourage inclusivity in space travel and everyday life.

Tune in at 7 pm this Sunday March, 11 to hear more about Jessica’s research and journey to graduate school. Not a local listener? Stream the show live online!

 

 

Workplace Woes for Women in Engineering

The human race has given rise to incredible engineering accomplishments. Some examples include an Egyptian pyramid with 2.3 million perfectly placed limestone blocks, the Great Wall of China that traverses difficult terrain and can be seen from space, or the more recent example of the SpaceX Falcon Heavy launch, sending a sports car floating through space with re-usable rockets landing back on Earth to use for a future mission. It’s no surprise that the engineering field attracts the best and brightest among us because they are innovators, problem solvers, and basically all white males. Wait – What?

Four minutes into SpaceX’s Falcon Heavy launch, the manufacturing division was shown which has errily similar demographics to the NASA space race era. via @B0yle on Feb 6th 2018

During the celebration of the Falcon Heavy launch the SpaceX guys were shown jumping for joy at the technological milestones. The same way you cringe from an oncoming car with high beams is the same way many felt about the gender imbalance that was present in the 1970’s during the NASA days and continues to persists in one of the most innovative companies the world has ever seen. For example, the 2016 film Hidden Figures began to break that mold, detailing the story of female African-American mathematicians and engineers living in the south in the 1950’s who helped propel NASA to the moon, yet few knew or acknowledged their enormous role. Since their story remained in the shadows how could a young student believe ‘I too could be a female engineer’ if they believe it’s never been done before? One’s life expectations are shaped by what they see around them, and without role models that ‘look like me’ in positions of power, how can we expect for anything to change?

Gender gap in bachelor’s degrees awarded by field of study, 1969-2009. Figure 1. Courtesy of Legewie, J., and T. DePrete. 2014. The High School Environment and the Gender Gap in the Science and Engineering. Sociology of Education. 87(4):259-280.

Our guest this evening is Andrea Haverkamp, a 2nd year PhD student in the College of Engineering, who is asking what it means to think of yourself as an engineer, and examining how the engineering culture has perpetuated the lack of diversity we see today. Of the currently active engineering professionals approximately 90% are men, university engineering programs are nearly 80% male dominated. Herein lies the paradox; girls get better grades than their male counterparts from kindergarten through high school, girls have a similar level of STEM interest as their male counterparts early in their schooling career and within the last decade women outnumber men among college graduates. Unfortunately, women significantly lag behind men in college STEM degrees and only 1 out of 6 engineering degrees are received by women.

Andrea snuggling up with her beloved dog, Spaghetti.

Andrea’s research seeks to answer what happens in the engineering workplace that continues to be unwelcoming to women; but gender cannot be taken in isolation because there is a confluence of race, socioeconomic class, and potential disabilities that color our thought process that we cannot avoid. Her work also focuses on LGBT students and a broader, more expansive, theory of gender than has been used in prior engineering research. Furthermore she is using novel approach that breaks traditional boundaries in the social sciences field that she hopes to encourage her interviewees to become an active participant and empower them to become co-authors on future research papers. This method, Community Collaborative Research, was made popular by a researcher who lived in a prison to better relate to those people in his work. How can you expect to have female engineers rise through the ranks, if there are hardly any female engineers to look up to; can you see yourself become a superhero if you’re from an underrepresented minority? A recent pop-culture example is the release of the Marvel’s Black Panther; the first film with an all black cast, predominately black writers, and directors that celebrates black culture. Here is how one fan reacted from just seeing the poster [displaying the all black cast] “This is what white people get to feel all the time? Since the beginning of cinema, you get to feel empowered like this and represented? If this is what you get to feel like all the time I would love this country too!”

There is no silver bullet that will be an overnight fix for the gender imbalance in the workplace or the salary disparity between men and women in the same job. But there are some positive examples; such as some companies are taking concrete actions to get women into leadership roles, or how the Indian Space Agency (with a recent boom in women engineers) sent a rocket to Mars that was less expensive than the making of “The Martian! Through Andrea’s research we can at least begin to systematically answer the questions of how to develop a more inclusive culture for aspiring women engineers and workplaces alike. As Jorja Smith sings in the Black Panther soundtrack, “I know that we have asked for change. Don’t be scared to put the fears to shame…”

You can listen to the show at 7PM Sunday March 4th on 88.7FM or stream the show live online!

If you want to hear more from Andrea, she also hosts her own KBVR radio show called LaborWave every other Friday at 2PM. If you want to read more about Andrea’s field, she’s on the Editorial Board for the International Journal of Engineering, Social Justice, and Peace.

How many robots does it take to screw in a light bulb?

As technology continues to improve over the coming years, we are beginning to see increased integration of robotics into our daily lives. Imagine if these robots were capable of receiving general instructions regarding a task, and they were able to learn, work, and communicate as a team to complete that task with no additional guidance. Our guest this week on Inspiration Dissemination, Connor Yates a Robotics PhD student in the College of Engineering, studies artificial intelligence and machine learning and wants to make the above hypothetical scenario a reality. Connor and other members of the Autonomous Agents and Distributed Intelligence Laboratory are keenly interested in distributed reinforcement learning, optimization, and control in large complex robotics systems. Applications of this include multi-robot coordination, mobile robot navigation, transportation systems, and intelligent energy management.

Connor Yates.

A long time Beaver and native Oregonian, Connor grew up on the eastern side of the state. His father was a botanist, which naturally translated to a lot of time spent in the woods during his childhood. This, however, did not deter his aspirations of becoming a mechanical engineer building rockets for NASA. Fast forward to his first term of undergraduate here at Oregon State University—while taking his first mechanical engineering course, he realized rocket science wasn’t the academic field he wanted to pursue. After taking numerous different courses, one piqued his interest, computer science. He then went on to flourish in the computer science program eventually meeting his current Ph.D. advisor, Dr. Kagan Tumer. Connor worked with Dr. Tumer for two of his undergraduate years, and completed his undergraduate honors thesis investigating the improvement to gauge the intent of multiple robots working together in one system.

Connor taking in a view at Glacier National Park 2017.

Currently, Connor is working on improving the ability for machines to learn by implementing a reward system; think of a “good robot” and “bad robot” system. Using computer simulations, a robot can be assigned a general task. Robots usually begin learning a task with many failed attempts, but through the reward system, good behaviors can be enforced and behaviors that do not relate to the assigned task can be discouraged. Over thousands of trials, the robot eventually learns what to do and completes the task. Simple, right? However, this becomes incredibly more complex when a team of robots are assigned to learn a task. Connor focuses on rewarding not just successful completion an assigned task, but also progress toward completing the task. For example, say you have a table that requires six robots to move. When two robots attempt the task and fail, rather than just view it as a failed task, robots are capable of learning that two robots are not enough and recruit more robots until successful completion of the task. This is seen as a step wise progression toward success rather than an all or nothing type situation. It is Connor’s hope that one day in the future a robot team could not only complete a task but also report reasons why a decision was made to complete an assigned task.

In Connor’s free time he enjoys getting involved in the many PAC courses that are offered here at Oregon State University, getting outside, and trying to teach his household robot how to bring him a beer from the fridge.

Tune in to 88.7 FM at 7:00 PM Sunday evening to hear more about Connor and his research on artificial intelligence, or stream the program live.

Safe nuclear power and its future in our energy portfolio

Humanity’s appetite for energy is insatiable. The US Energy Information Administration projects almost a 30% increase in world energy demand by 2040. The fastest expansion of energy production is projected for renewables, whereas coal demand is expected to flat line. By 2040, the world will also practically double electricity production from nuclear fission, and for good reason: nuclear power is a reliable source of carbon free energy. In the United States, for instance, about 60% of carbon free electricity is generated by nuclear power.

Dylan Addison recently earned a Master’s degree from OSU’s Materials Science program.

However, significant barriers exist to making nuclear energy a stable and lasting piece of the puzzle. The way things are going, most new nuclear power in the coming decades will be installed in China, which has recognized the societal costs of air polluting fossil fuels, and is taking massive corrective action. Meanwhile, the rest of the world is hesitating when it comes to the nuclear option.

Our guest this week hopes to change that, by helping to qualify the world’s first small modular nuclear reactor design. Dylan Addison recently received his Master’s Degree in Materials Science from OSU. His focus was high temperature crack propagation in a nickel superalloy that is slated for use in a Generation IV reactor. Dylan transitioned to work with NuScale Power here in Corvallis, where he’ll continue to study the safety of materials exposed to high temperatures and pressures.

There are many reasons why you should keep track of NuScale Power in the coming years. In addition to being a local company, they stand to solve two key issues facing the nuclear energy industry: (1) NuScale stands to alter the economics of nuclear energy by radically reducing the upfront capital investment and time associated with plant construction, and (2) the passive safety features built into NuScale’s design will quell the fears of even the most skeptical among us.

The NuScale Power Module takes advantage of natural convection to circulate water through the nuclear core, eliminating a host of safety concerns.

Dylan’s Master’s thesis work was in performing high temperature crack growth experiments. Shown here is a sample at 800 °C!

Like many of us, Dylan’s meandering path through higher education took him longer than expected, and through several fields. While studying rhetoric at Willamette University, he started selling health-products over the phone from his dorm room. After dropping out of Willamette, he put in two years as a line cook at a thai food restaurant to see what life would look like in the service sector (his conclusion? It wasn’t for him). Then he decided to return to school and study engineering at OSU. While at OSU, he maintained the web presence of a marketing firm that continued to employ him after graduating with a Bachelor’s of Mechanical engineering in 2014. However, he wasn’t satisfied with the impact he was making by selling stuff on the internet, and entered graduate school in 2015 with a firm resolve to apply his technical knowledge to problems that have real weight. Working under Dr. Jamie Kruzic, Dylan was introduced to the field of fracture mechanics, which qualified him to apply for a job with NuScale upon graduation. Now, a few months into an engineering job, he gets to share his story on this week’s episode of Inspiration Dissemination!

Be sure to tune in Sunday October 1st at 7PM on 88.7FM or live to hear more about how Dylan’s schooling at Oregon State has positioned him to help bring reliable carbon free energy to all the world’s people.

You can also download Dylan’s iTunes Podcast Episode!

To code or not to code: the way forward for machine learning

In a rapidly changing word of technology and engineering advancements, we’re reminded of Charles Darwin’s words it’s not the strongest that survive, but the most adaptable. For humans this means learning from our errors, one painful mistake at a time, and fixing our approach so we do not stumble again. We’re limited by our personal experiences so we can only adapt once we approach a problem; but by then it may be too late. Imagine having the collective wisdom and understanding of everyone’s experiences so that you know how to solve problems you’ve never seen before. This is the beauty of machine learning.

 

Behrooz hanging out in front of the Magnolia’s in the MU

If you haven’t heard of machine learning, then it’s just a matter of time. These techniques are already involved in highly complex board games, advertising optimization, and especially self-driving cars. It’s difficult to say how impactful machine learning will be to our everyday lives because the applications of this field are still being discovered. One of the primary foundations of machine learning is researching how computers interpret visual information so computers can make on-the-fly adjustments to stop for a pedestrian or speed up to merge on the freeway.

Behrooz Mahasseni recently finished his Ph.D. in Electrical Engineering and Computer Science where his research focused on how computers interpret video recordings. As part of his research, he worked on a project to analyze football videos to identify specific patterns like huddles, punts, and special teams plays. This is specifically useful for football recruiters who don’t have time to watch 3.5-hour football games when they’re looking for a good wide-receiver for their team. Behrooz’s work helps the computer understand when passing plays occurred so the football recruiter can watch the ‘highlights’ reel for five minutes and get all the information they need to make a hiring decision. This seems rather easy, but Behrooz worked on this for high school football games where the video is not in high definition, from an oblique angle instead of a birds-eye-view, and probably has a very excited parent-videographers jumping up and down for major plays. Obviously teaching a computer to understand videos is easier said than done, but Behrooz was able to get all this accomplished with a high degree of accuracy that helped him land a job with Apple. He’s described this job as research and development using the skills he learned in graduate school (that’s about all he can say) but it took him many years of school to finally realize he had the skills to act as the spearhead of technological innovation.

Behrooz’s family including his wife Mitra and Behrad celebrating the Persian New Year March 2016

There is so much more to discuss with Behrooz, especially about where the field of machine learning and artificial intelligence is moving. We will also discuss his first experience with a robotic competition in Tehran, his decision to move to the United States, and his never-ending drive for finding and solving new problems. Be sure to listen in Sunday September 3rd at 7PM on 88.7 KBVR Corvallis!