Author Archives: Kristen Finch

Micro structures and macro support

Our guest this week, Shauna Otto from the Department of Biochemistry and Biophysics, is a member of the lab of Dr. Colin Johnson. The focus of the Johnson lab is a group of proteins called ferlins. The ferlin family of proteins have many different functions, and many are involved in the fusion of vesicles to cell membranes in a process called, “exocytosis.” Another example is the protein otoferlin which fuses vesicles carrying neurotransmitters to the cell membrane of neurons in the inner ear that play a crucial role in hearing. See more about otoferlin from past guests from the Johnson lab, Murugesh Padmanarayana and Nicole Hams.

Shauna loading a sample for Cobalt-60 irradiation at the Notre Dame Radiation Laboratory.

Shauna studies dysferlin, another ferlin protein, which helps mend membrane tears in muscle cells. Mutations in the dysferlin gene lead to Muscular Dystrophy II. Through her work, Shauna has characterized portions or “domains” of the large dysferlin protein via Nuclear Magnetic Resonance (NMR). NMR is a process by which the magnetic field around the nuclei of atoms in a protein domain are excited, and by recording the magnitude of that disruption, Shauna can learn the structure of the domain. Her focus domain putatively binds other proteins that join dysferlin in a protein complex that initiates muscle cell membrane repair. However, the mechanism by which dysferlin bind repair proteins is unclear. Through her explorations with dysferlin, Shauna has found that an increase in Calcium leads to the stabilization of the dysferlin domains that might initiate repair. Right now, it is unclear if this stabilization initiates muscle cell repair, but if it does the next question is how and when such stabilization occurs.

Shauna and husband (Kris Hill) backpacking in Yosemite

Shauna’s academic journey was wrought with hardship, and we are grateful to her for being willing to share her story with us on air. Shauna started undergraduate with an interest in marine biology, but found that college is cost prohibitive. After a two year break, she went back to University of California Long Beach to major in Chemical Engineering, but finally landed on biochemistry. She had a knack for chemistry and loved solving complex puzzles in cellular biology through the lens of protein interactions and biochemical pathways. She began undergraduate research, but her work took a turn as she struggled with homelessness. Homelessness is a growing problem for college students, and has prompted bills targeting the problem of home insecurity for students in California and Washington. However, for Shauna, homelessness was not discussed among fellow students and officials when she attended school. Rather, instead of resources to alleviate her financial hardship, she was met with policy allowances such as permission to sleep in her research lab.

Shauna and her daughter in a bookshop.

Since beginning her PhD at OSU, Shauna has found support here on campus from mentors and her department who have listened and replied with support in the form of University Resources and Services to help her succeed academically, financially, and in personal wellness. Given her past, Shauna now knows the questions to ask about support when seeking the next job, and she is a resource for undergraduates and graduate students who are going through similar life experience.

Hear more about Shauna’s research and personal story this Sunday June 2, 2019 at 7 pm on KBVR Corvallis 88.7FM. Stream the show live or catch the episode as a podcast in the coming weeks.

A bird’s eye view: hindsight and foresight from long term bird surveys

The Hermit Warbler is a songbird that lives its life in two areas of the world. It spends its breeding season (late May-early July) in the coniferous forests of the Pacific Northwest (PNW) and migrates to Central America for the winter. Due to the long journey from the Central America to the PNW, it is dependent on food resources being available throughout its journey and when it arrives to breed. The environmental conditions across its range are tightly linked to habitat resources, and unfavorable climatic conditions, such as those becoming less frequent due to climate change, can negatively affect bird populations. Changes in bird populations are not always easy to notice, especially with small songbirds that live high in tree canopies. Studying birds for one or a few years may not be enough to signal the change in their well-being.

A Hermit Warbler singing on a lichen-covered branch in the forest canopy. Male Hermit Warblers will defend their territories ferociously against other males during the breeding season. H.J. Andrews Experimental Forest, May 2017.

Fortunately, long term data sets are becoming more available thanks to long term study programs. For example, the Willamette National Forest in Oregon is home to H. J. Andrews Experimental Forest (the Andrews). Designated by the USDA Forest Service Pacific Northwest Research Station, the Andrews forest hosts many forest research projects and has been monitored since 1948. In 1980, it was became one of the National Science Foundation’s Long Term Ecological Research sites ensuring that it will remain a resource for scientists for years to come. Bird surveys at the Andrews began 11 years ago, and researchers at Oregon State University are beginning to draw connections between changing climate and bird communities in relation to the forest’s structure and compositions.

H.J. Andrews Experimental Forest, where long-term bird study is launched in 2009 by Drs. Matt Betts and Sarah Frey. The forest sits on the moist foothills of western Cascades in Willamette National Forest.

One of these researchers, Hankyu Kim PhD student in the Department of Forest Ecosystems and Society, is using this data to study the Hermit Warbler and other bird species at the Andrews. Hankyu is interested in how and why bird communities are changing over time. With 11 years of bird observations and extensive temperature data, he is attempting to estimate how population of birds persist in the forests. To begin approximating how current climate effects birds, we need to have an idea about bird communities in the past. Past conditions can help us explore how birds might respond to future climate scenarios. Without the effort of many researchers before him to monitor birds, his investigation would be impossible.

Bird surveys are conducted via point counts. Researchers stand at a point count station for 10 minutes and count all bird species they see and hear. Listen to a hermit warbler and some other background birdsongs recorded at H.J Andrews in June 2017.

Hankyu realized the importance of long-term data after reviewing the 45-years of wintering waterbird surveys collected by the Birdwatching Club at Seoul National University, Korea during his time as an undergrad. The group took annual trips to the major Rivers and Coastal Areas, and in just a couple decades the members of the club had recorded declines and disappearances of some species that were once common and widespread. This finding inspired Hankyu to pursue graduate school to study unnoticed or uncharismatic species that are in danger of decline. Every species plays a critical role in the ecosystem, even if that role has not yet been discovered.

Tune in on Sunday May, 19 at 7 pm to hear more about Hankyu Kim’s research with birds. Not a local listener? Stream the show live or catch up when the podcast episode is released.

Want more about the Hermit Warblers in Oregon? Check out this video of Oregon Field Guide featuring Hankyu and some of his colleagues from Oregon State University.

Being the Multilingual, Racialized “Other” in an English Dominated Linguistic Landscape

Jason at the whiteboard

Consider the language and messages you process each day. As you navigate your daily routine, what language do you hear and see most frequently? For folks living in the Corvallis, Oregon, the answer is probably English. In the last month, how many times, when, and where have you been exposed to spoken words or even signs in another language? For those of us on the Oregon State University campus, you could easily overhear or may participate in a conversation in Spanish, Chinese, or Arabic in the Memorial Union or Valley Library. How does the “linguistic landscape” (written or spoken words you encounter in life) affect you? What do you feel and how do you react to hearing a language you don’t understand? Have you been told that you don’t speak English well enough?

Shenanigans in Portland with Pat

Jason Sarkozi-Forfinski, a PhD student in Anthropology, wants to gain insight into the linguistic landscape students at Oregon State University are exposed to and their actions and feelings about about it, especially for students from non-English speaking countries. Jason’s research involves interviewing students and community members about their experiences in the US such as:

  • How do Thai-speaking folks fair when practicing English with a non-American accent?
  • How does a (white) American- English speaker from Roseburg regard different accents?
  • How do Mandarin speakers from Malaysia react to others speaking English with different accents?
  • How does an Arabic speaker from the Gulf region perceive their own accent?
  • How comfortable do Japanese speakers feel speaking a language other than English in the US?
  • How is all of this connected to the institutionalized tool of racism?

Jason has found that folks have preferences or biases about their linguistic landscape. Oregon State recruits both students from around the world and a large multilingual community of more local students. His respondents have reported being discouraged from speaking in a non-English language or facing negative social and professional consequences for speaking other languages or English with a non-(white)American accent. Could a preference for English with a (white) American accent perpetuate division? Or even bigoted practices?

Jason’s current research developed from years of conversations with friends and colleagues about being multilingual in the US. He began exploring language in his undergraduate education where he majored in Spanish and also studied Portuguese. He also studied English in Miami,

Grilled cheese on a school bus in Portland with Veronica (left) and husband, Nick.

Florida, and worked to understand how non-English languages influences local English. Before coming to OSU for his PhD, Jason has worked as a Spanish and English instructor in the US, Spain, Japan, and China.

Tune in to KBVR Corvallis 88.7 FM on Sunday March, 10 at 7 PM to hear more about Jason’s research and his path to graduate school. Stream the show live or catch this episode as a podcast.

Clarification [See Podcast at 25:45]: Asking someone to change their accent, according to Lippi-Green a linguistic who wrote “Speaking with an Accent,” is like asking someone to change their height. It’s doable (with lots of surgery) but would require a lot of intervention. The point here is that it’s not realistic to ask someone to work on their accent. It’s also rather demeaning.

The Hidden Side of Graduate School: Finding your place within your discipline

Summary: Graduate student researchers Brian Erickson and Chelsea Behymer talk about their transition from natural sciences to social sciences and the process of finding their place within their disciplines.

As graduate students, many of our academic conversations focus around our research. But graduate school is about more than just designing and carrying out a project; it also involves finding your place within a larger community.

Chelsea Behymer and Brian Erickson met through a science communication course in the Integrative Biology department (IB599), and they quickly found common ground. Although their research interests are very different, both have had experiences that sparked interest and conviction to explore the human dynamic of the ecological systems with which they are more familiar. While neither is new to academia, they find themselves navigating new identities as they explore what it means to be a social scientist working on human components of environmental issues.

Chelsea takes guests onboard a coastal Alaskan expedition on an intertidal walk.

Chelsea is a first-year Ph.D student in the Environmental Sciences graduate program, with a focus on informal science education. For the past six years, Chelsea has engaged diverse groups of people in marine biology and natural history as a Naturalist onboard both large and smaller, expedition style cruise ships. Interacting with a diversity of people in shared travel and learning experiences across the world’s oceans has been one of the most rewarding roles of her career. At the same time, being immersed in nature-based tourism has opened her eyes to the nature-based tourism industry as not only a place where human connections to the natural world are fostered, but provides wonderful opportunities for science communication.

With the growing nature-based tourism industry, perhaps the opportunities to connect have never been more abundant. Chelsea’s research interests aim to understand the potential for citizen science in nature-based tourism to act as both an effective means of engaging people with local scientists, while at the same time providing opportunities for the kind of collaborative environment where meaningful conversations between scientists and the public can occur.

Brian presents work on ocean acidification education during the State of the Coast conference.

Brian is also a first-year Ph.D student studying fisheries social science in the Department of Fisheries and Wildlife. Growing up in the midwest, he first fell in love with the ocean while working as a field technician in the US Virgin Islands, Panama, and the Northwest Hawaiian islands. Partially because he defined himself as a biologist, it took him almost a decade to realize that he was interested in answering social science questions. Brian is generally interested in applying what we know about human behavior to improve marine conservation outcomes for people and the planet. His master’s work at OSU focused on exploring a commonly held assumption – that knowledge of environmental problems leads to action to fix those problems – through the lens of a high school ocean acidification curriculum. For his PhD work, Brian will be collaborating with the SMART Seas Africa Programme to examine social aspects of marine conservation in East Africa.

In this special segment, Chelsea and Brian will talk with ID host Kristen Finch about the challenge of finding their way as social scientists in a field that is working towards interdisciplinary collaboration. Don’t miss this conversation; tune in to KBVR Corvallis 88.7FM at 6 pm PST on Sunday March, 10. Stream the show live or catch the podcast.

Written by Chelsea Behymer and Brian Erickson. Edited by Kristen Finch.

Who Runs the World? Exploring Gender Diversity in the Forest Sector

The following article was written by Pipiet Larasatie and edited by Kristen Finch.

Pipiet Larasatie is a third year PhD student in Wood Science and Engineering Department, College of Forestry, at Oregon State University. Her friends and close colleagues describe her as “Ms. Social” and “Ms. Doing-All.”

And she is! Pipiet is currently involved with four research projects and has standing on four committees at the Department and College level (e.g. College of Forestry’s Diversity Equity Inclusion Committee). Additionally, she is a digital communications coordinator for the International Society of Wood Science and Technology. One of her initiatives is #WomenInWoodScience or a network for women who are associated with wood science.

Pipiet working in the Forest Sciences Dept. University of Helsinki in 2017.

As a woman and a first generation student in her male dominated family, Pipiet has a high passion on empowering young females. For this reason, Pipiet switched her research focus from wood centric to gender diversity in the forest sector.

So far, Pipiet’s research involved collaboration with folks at OSU (her advisor and a Master’s student), but also international collaboration with a professor and a Master’s student in University of Helsinki, Finland. During this part of the project, the team interviewed female executives in the global forest sector companies about gender aspects in the North American and Nordic industries. Some trends became apparent across interview responses. Their respondents agreed that the North American and Nordic forest sector is a historically male-oriented and male-dominated industry, which can lend itself to characteristics of a chauvinistic and masculine culture. This also was clear: to be successful in the male-dominated work setting, young females need a support on multiple levels e.g. good bosses/leaders, mentors, and networks. The interviewees also voiced that education is important when finding a niche in the workplace and for making young females more competitive in the job market. 

Pipiet with one of her mentees joining a faculty led summer course, “The Forest Sector in Alpine Europe.” Photo shows group at University of Primorska, Slovenia.

Tune in to KBVR Corvallis 88.7FM to hear our special segment with Pipiet at 7 pm on March 3, 2019. Pipiet present her research findings alongside pop songs from Beyoncé and Alicia Keys. Later, Pipiet will be accompanied by one of her mentees, Taylor Barnett, a third year undergraduate student studying Natural Resources at College of Forestry. Taylor will share her experience with mentorship programs at OSU and how these mentorship has aided her professional development.

Not a local listener? No sweat! Stream the show live or check out the podcast version of this special episode.

Sticks and stones may break my bones, and words might unintentionally enforce gendered behavior

Hey guys, do you notice when you or others use gendered language? As with the last sentence, gendered language has become part of our culture’s vocabulary and we may use it without a second thought. There is a growing field of research that studies how language can shape perceptions of ourselves and others.

Jeana presenting “Decolonizing Masculinities” with Nyk Steger and Minerva Zayas at the 2018 Examining Masculinities Conference at OSU

Jeana Moody is a second year Masters student in Women, Gender and Sexuality Studies working with Professor Bradley Boovy. Her thesis research focuses on the use and impact of gendered words and phrases in the English language, such as “throw like a girl”, “man up”, and “don’t be a bitch.” What are the implications of saying “man up” to someone who presents as a woman? As a man? Does the gender of the speaker play a role?

To explore this, Jeana designed a study to collect data through in-person interviews and anonymous online surveys, asking participants to describe situations when they have either used such statements or have been the subject of the statements. The questions include: where did this happen? Who was there? Were there any power dynamics? How did it make you feel then, and now?

For any research involving human participants, OSU researchers must submit a proposal to and be approved by Oregon State’s Institutional Review Board (IRB). This rigorous process requires submission of interview questions, the number of participants, how the data will be collected, and how consent will be obtained from the participants. Additionally, since there is always the possibility of triggering a participant’s traumatic memories from survey questions, help resources must be provided to participants. Jeana’s study was just approved last week.

Jeana hiking in the San Gabriel Mountains in Southern California

From the data collected, Jeana hopes to gain insight into feelings of and implications on participants in the study, and present the anecdotal evidence within a cultural context. This research draws from the subjects of feminist sociolinguistics and critical race theory. It addresses the idea that language begets culture, and culture begets language. Her interest in the subject arose from working with non-native English speakers. She observed that they often use American swear words and racist words without understanding the impact of the words they were using. Just because someone doesn’t understand those words doesn’t mean they don’t hold an impact.

Jeana hiking in the Willamette National Forest in Oregon

When Jeana is not conducting research, she is the instructor of record for Men and Masculinities and is a Teaching Assistant for several other classes. She is originally from Pullman, Washington and attended Western Washington University as part of the Fairhaven College (an interdisciplinary liberal arts college). She enjoys hiking and being anywhere outdoors, and she loves to cook and draw. When not in Corvallis, she can likely be found in Prague where she has taught English and worked for a travel agency.

If you are interested in participating in Jeana’s research study online or in-person, please email moodyje@oregonstate.edu to set up an interview or with any questions you may have, or follow the link to her Gendered Language Online Survey.

Written by Maggie Exton.

Core Strategies for Conservation of Greater Sage-Grouse

Greater sage-grouse (GRSG) is a North American bird species that nests exclusively in sagebrush habitat. In the last century, natural populations of this species have significantly declined largely due to human influenced habitat loss and fragmentation. This has prompted multiple petitions to the U.S. Fish and Wildlife Service (USFWS) to list GRSG under the Endangered Species Act (ESA), which would require mandatory restrictions on critical sagebrush habitat. This means that land managers of sagebrush areas would face land use restrictions for natural resource extraction and development, the bulk of the economy in Wyoming.

Wyoming Basin study site with associated GRSG Core Areas in blue. These Core Areas were designated as part of the GRSG Core Area Protection Act, Wyoming’s GRSG conservation policy aimed at protecting at least 67% of male GRSG attending leks. This policy is focused on directing development outside of these areas by setting strict conservation measures inside the Core Areas. Overall, the policy has remained effective in protecting at least 2/3 of GRSG habitat and has been identified as having the highest conservation value to maintaining sustainable GRSG populations.

 

Scent station and associated trail camera set-up in Natrona County, WY. Scent stations were randomly placed throughout the study site along roads and stratified between Core and Non-Core Areas. Mammalian predators are known to use roads for easy travel. These scent stations will help gather occupancy data of mammalian predators (Photo Credit: Eliana Moustakas).

Wyoming is a stronghold for GRSG, with the most birds, the most leks (male mating display grounds), and the largest contiguous sagebrush habitat in North America. Since GRSG declines have led to its possible endangered listing, Wyoming Governor Dave Freudenthal launched an effort in 2007 to develop stronger policies for GRSG that would protect the species and its habitat while also sustaining the state’s economy. A public forum followed, including representatives from state and federal agencies, non-governmental organizations, and industries, and in 2008 a conservation policy called the Greater Sage-Grouse Core Area Protection Strategy was developed to maintain and restore suitable habitat and active breeding GRSG pairs. The plan aims to protect at least 67% of male GRSG attending leks, and is focused on directing development outside of Core Areas by setting strict conservation measures inside Core Areas. By protecting sagebrush habitat and allowing development and mining in Non-Core Areas, Wyoming can continue to expand its natural resource economy and play a critical role in GRSG conservation.

In 2010, the USFWS concluded that GRSG were warranted protection but left them off the ESA list because threats were moderate and did not occur equally across their range. The status of GRSG was reevaluated in 2015 and the USFWS determined that GRSG did not warrant protection, claiming that the Core Area Strategy was sound framework for a policy by which to conserve GRSG in WY. However, recent monitoring of GRSG has shown that populations are still in decline in some Core Areas and in populations across their range. Our guest this week, Claire Revekant, a second year Master’s student in the Department of Animal and Rangeland Science, is trying to understand if avian and mammalian predator abundance differs between Core and Non-Core Areas.

Golden eagle using a utility pole to perch. Raptors and corvids are known to use  structures to perch and nest.

 

Working under Dr. Jonathan Dinkins, Claire estimates associations between human influence areas and habitat variables on the abundance of predatory birds and occupancy of mammalian predators. For example, raptors and corvids have been documented to perch and nest on fences and other human structures, and roads have been found to be used as travel paths for mammalian predators. Claire’s hypothesis is that predatory animals will be higher in Non-Core Areas where human-influenced environments serves as areas of food subsidies. Identifying areas of predator abundance and relating those areas to human features and habitat variables may help policy makers prioritize plans to mitigate human influence and protect sagebrush habitat.

Badger captured by trail camera at scent station in Lincoln County.

While her research is focused on predators of GRSG, Claire’s work for GRSG conservation contributes to the conservation of other sagebrush-obligate species (species that relay on sagebrush for all or some parts of their life cycle). By protecting the ecosystem for one “umbrella” species, other species may also benefit. Throughout her career as a wildlife biologist, Claire has been involved with numerous projects where she has handled and monitored several species. From learning to band raptors as a child to monitoring seabird productivity as an intern at the Monomoy National Wildlife Refuge, Claire has developed a passion for research. She told us that she can’t remember a time when she had a different dream job. Tune in tonight Sunday November, 11 at 7 to hear more about Claire’s research and her journey to graduate school on 88.7 FM KBVR Corvallis, or stream the show live.

Infection Interruption: Identifying Compounds that Disrupt HIV

Know the enemy

Comparing microbial extracts with Dr. Sandra Loesgen.

The Human Immunodeficiency Virus, or HIV, is the virus that leads to Acquired Immunodeficiency Syndrome (AIDS). Most of our listeners have likely heard about HIV/AIDS because it has been reported in the news since the 1980s, but our listeners might not be familiar with the virus’s biology and treatments that target the virus.

  • HIV follows an infection cycle with these main stages:
    • Attachment – the virus binds to a host cell
    • Fusion – the viral wall fuses with the membrane of the host cell and genetic material from the virus enters the host cell
    • Reverse transcription – RNA from the virus is converted into DNA via viral enzymes
    • Integration – viral DNA joins the genome of the host cell
    • Reproduction – the viral DNA hijacks the host cell activity to produce more viruses and the cycle continues
  • Drug treatments target different stages in the HIV infection cycle to slow down infection
  • However, HIV has adapted to allow mistakes to occur during the reverse transcription stage such that spontaneous mutations change the virus within the host individual, and the virus becomes tolerant to drug treatments over time.

Faulty Machinery

Due to the highly mutable nature of HIV, a constant supply of new drug treatments are necessary to fend off resistance and treat infection. Our guest this week on Inspiration Dissemination, Ross Overacker a PhD candidate in Organic Chemistry, is screening a library of natural and synthetic compounds for their antiviral activity and effectiveness at disrupting HIV. Ross works in a Natural Products Lab under the direction of Dr. Sandra Loesgen. There, Ross and his lab mates (some of whom were on the show recently [1] [2]) test libraries of compounds they have extracted from fungi and bacteria for a range of therapeutic applications. Ross is currently completing his analysis of a synthetic compound that shows promise for interrupting the HIV infection cycle.

“Uncle Ross” giving a tour of the lab stopping to show off the liquid nitrogen.

Working in Lab with liquid nitrogen.

 

 

 

 

 

 

 

Havin’ a blast

Chemistry Club at Washington State University (WSU) initially turned Ross onto chemistry. The club participated in education outreach by presenting chemistry demonstrations at local high schools and club events. Ross and other students would demonstrate exciting chemistry demos such as filling hydrogen balloons with salt compounds resulting in colorful explosions piquing the interest of students and community members alike. Ross originally made a name in

Collecting Winter Chanterelles in the Pacific Northwest.

WSU’s chemistry club, eventually becoming the president, by showing off a “flaming snowball” and tossing it from hand to hand—don’t worry he will explain this on air. For Ross, chemistry is a complicated puzzle that once you work out, all of the pieces fall into place. After a few undergraduate research projects, Ross decided that he wanted to continue research by pursing a PhD in Organic Chemistry at Oregon State University.

 

 

Tune in this Sunday October 7th at 7 PM to hear from Ross about his research and path to graduate school. Not a local listener? Stream the show live or catch this episode on our podcast.

Learning without a brain

Instructions for how to win a soccer game:

Score more goals than your opponent.

Sounds simple, but these instructions don’t begin to explain the complexity of soccer and are useless without knowledge of the rules of soccer or how a “goal” is “scored.” Cataloging the numerous variables and situations to win at soccer is impossible and even having all that information will not guarantee a win. Soccer takes teamwork and practice.

Researchers in robotics are trying to figure out how to make a robot learn behaviors in games such as soccer, which require collaborative and/or competitive behaviors.

How then would you teach a group of robots to play soccer? Robots don’t have “bodies,” and instructions based on human body movement are irrelevant. Robots can’t watch a game and later try some fancy footwork. Robots can’t understand English unless they are designed to. How would the robots communicate with each other on the field? If a robot team did win a soccer game, how would they know?

Multiple robot systems are already a reality in automated warehouses.

Although this is merely an illustrative example, these are the types of challenges encountered by folks working to design robots to accomplish specific tasks. The main tool for teaching a robot to do anything is machine learning. With machine learning, a roboticist can give a robot limited instructions for a task, the robot can attempt a task many times, and the roboticist can reward the robot when the task is performed successfully. This allows the robot to learn how to successfully accomplish the task and use that experience to further improve. In our soccer example, the robot team is rewarded when they score a goal, and they can get better at scoring goals and winning games.

Programming machines to automatically learn collaborative skills is very hard because the outcome depends on not only what one robot did, but what all other robots did; thus it is hard to learn who contributed the most and in what way.

Our guest this week, Yathartha Tuladhar, a PhD student studying Robotics in the College of Engineering, is focused on improving multi-robot coordination. He is investigating both how to effectively reward robots and how robot-to-robot communication can increase success. Fun fact: robots don’t use human language communication. Roboticists define a limited vocabulary of numbers or letters that can become words and allow the robots to learn their own language. Not even the roboticist will be able to decode the communication!

 

Human-Robot collaborative teams will play a crucial role in the future of search and rescue.

Yathartha is from Nepal and became interested in electrical engineering as a career that would aid infrastructure development in his country. After getting a scholarship to study electrical engineering in the US at University of Texas Arlington, he learned that electrical engineering is more than developing networks and helping buildings run on electricity. He found electrical engineering is about discovery, creation, trial, and error. Ultimately, it was an experience volunteering in a robotics lab as an undergraduate that led him to where he is today.

Tune in on Sunday at 7pm and be ready for some mind-blowing information about robots and machine learning. Listen locally to 88.7FM, stream the show live, or check out our podcast.

Crabby and Stressed Out: Ocean Acidification and the Dungeness Crab

One of the many consequences associated with climate change is ocean acidification. This process occurs when high atmospheric carbon dioxide dissolves into the ocean lowering ocean pH. Concern about ocean acidification has increased recently with the majority of scientific publications about ocean acidification being released in the last 5 years. Despite this uptick in attention, much is still unknown about the effects of ocean acidification on marine organisms.

Close-up of a Dungeness crab megalopae

Our guest this week, Hannah Gossner, a second year Master’s student in the Marine Resource Management Program, is investigating the physiological effects of ocean acidification on Dungeness crab (Metacarcinus magister) with the help of advisor Francis Chan. Most folks in Oregon recognize the Dungeness crab as a critter than ends up on their plate. Dungeness crab harvest is a multimillion dollar industry because of its culinary use, but Dungeness crab also play an important role in the ocean ecosystem. Due to their prevalence and life cycle, they are important both as scavengers and as a food source to other animals.

Hannah pulling seawater samples from a CTD Carrousel on the R/V Oceanus off the coast of Oregon

To study the effect of ocean acidification on Dungeness crab, Hannah simulates a variety of ocean conditions in sealed chamber where she can control oxygen and carbon dioxide levels. Then by measuring the respiration of an individual crab she can better understand the organism’s stress response to a range of oxygen and carbon dioxide ratios. Hannah hopes that her work will provide a template for measuring the tolerance of other animals to changes in ocean chemistry. She is also interested in the interplay between science, management, and policy, and plans to share her results with local managers and decision makers.

Hannah working the night shift on the R/V Oceanus

Growing up in Connecticut, Hannah spent a lot of time on the water in her dad’s boat, and developed an interest in marine science. Hannah majored in Marine Science at Boston University where she participated in a research project which used stable isotope analysis to monitor changes in food webs involving ctenophores and forage fish. Hannah also did a SEA Semester (not to be confused with a Semester at Sea) where she worked on a boat and studied sustainability in Polynesian island cultures and ecosystems.  Hannah knew early on that she wanted to go to graduate school, and after a brief adventure monitoring coral reefs off the coast of Africa, she secured her current position at Oregon State.

Tune in Sunday June, 17 at 7 pm PST to learn more about Hannah’s research and journey to graduate school. Not a local listener? Stream the show live or catch the episode on our podcast.

Hannah enjoying her favorite past time, diving!