Secrets of the Black Cottonwood

Ryan cultivated his interest in plants at a young age while checking wheat fields with his dad on the family farm near Beltrami, MN.

Growing up on a family farm in North Dakota, Ryan Lenz loved learning about wheat – specifically the things that made wheat varieties different. Why were some taller or shorter than others? Why did some have more protein? After gaining skills in molecular biology at North Dakota State University with a Bachelor of Science in Biotechnology, Ryan interned with a biotech company where he was finally able to make the connection between wheat varieties and the genes that make them different. This experience sparked his interest and led him to earn a Master’s degree in Plant Sciences at his alma mater and eventually brought him to OSU’s Department of Botany & Plant Pathology to study host-pathogen interactions as a PhD student with Dr. Jared LeBoldus.

Using black cottonwood (Populus trichocarpa) – a native tree to the western US – Ryan is working to reveal the genes responsible for making woody plants susceptible to fungal disease and those that give the fungus the ability to infect trees. The fungus of interest, Sphaerulina musiva, causes leaf spot and stem canker on cottonwood trees – the latter disease being more severe as it girdles the trees and causes the tops to break off.

Ryan tending to his tissue culture plants in the LeBoldus Lab.

The fungal pathogen was first found in the eastern United States in association with the more resistant eastern cottonwood (Populus deltoides), but has worked its way westward putting the susceptible black cottonwood at risk. This fast-growing cottonwood is a foundation species in riparian areas and provides erosion control. Not only are these trees important ecologically, they are also important in forest agriculture for their uses in making pulp for paper, biofuels, building materials, windbreaks, and for providing shade.

Ryan and his wife, Rebecca, enjoying the beautiful Pacific Northwest.

To learn how the tree and fungus interact, Ryan employs advanced molecular techniques like the CRISPR-Cas9 system to edit genes. To put it simply, he tries to find the important information in the plant and fungus by making changes in the genetic code and then seeing if it has a downstream effect. The implication of his work has two sides. On one hand, Ryan is trying to provide cottonwood breeders with insight to make a more resistant tree to be grown in the western US. While on the other hand, he is working to establish the black cottonwood as a model system for other woody hosts susceptible to necrotrophic fungi – those that feed on dead tissue. As a model system, the secrets of the black cottonwood would be unveiled, providing a blueprint of valuable information that could be applied to other woody trees.

 

One day, Ryan hopes to move back to the Midwest to be a plant researcher near his family’s farm.

Join us on Sunday, November 5, at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Ryan’s love for plant genetics and his journey to graduate school.

You can download Ryan’s iTunes’ Podcast Episode!

Print Friendly, PDF & Email