Monthly Archives: June 2017

Using sediment cores to model climate conditions

In the lab of Andreas Schmittner in the College of Earth, Ocean, and Atmospheric Sciences, recently-graduated PhD student Juan Muglia has been developing a climate model to understand ocean current circulation, carbon cycling, and ocean biogeochemistry during the last ice age, focusing on the Southern Ocean surrounding Antarctica.

Juan has developed a climate model using data gathered from sediment cores, which are samples from the ocean floor that provide researchers with a glimpse into the elemental and organic composition of the ocean at different points in time. Scientists can acquire insight into the characteristics of the Earth’s past climate by analyzing the geologic record spanning thousands of years. Modeling the conditions of the last ice age, which occurred 20,000 years ago, allows researchers to better understand how the Earth responds to glacial and interglacial cycles, prompting the transition between cold and warm phases (we are currently in a warm interglacial period).

The process of generating an accurate climate model consists of tuning parameters embedded in the physics equations and fortran code of the model, to reproduce characteristics directly observable in modern times. If researchers can validate their model by reproducing directly observable characteristics, the model can then be used to investigate the climate at points in time beyond our direct observational capacity.

Since it’s not possible to directly measure temperature or nutrient composition of the ocean during the last ice age, Juan uses an indirect signature that serves as a proxy for direct measurement. Three isotopic sediment tracers, including 15Nitrogen, 14Carbon, and 13Carbon, are incorporated into Juan’s climate model as proxies for biological productivity and current circulation in the ocean. Investigating changes in the elemental composition of the ocean, also known as biogeochemistry, is important for understanding how climate and biology have transformed over thousands of years. The ocean serves as an enormous reservoir of carbon, and much more carbon is sequestered in the ocean than in the atmosphere. The exchange of carbon dioxide at the interface of the ocean and atmosphere is important for understanding how carbon dioxide has and will continue to impact pH, ocean currents, and biological productivity of the ocean.

Even as a kid, Juan dreamed of becoming an oceanographer. He grew up near the ocean in Argentina, surrounded by scientists; his mom was a marine botanist and his dad is a geologist. During his undergraduate studies, he majored in physics with the goal of eventually becoming a physical oceanographer, and his undergraduate thesis consisted of building fortran code for a statistical physics project. After finishing his post-doctoral studies at OSU, Juan plans to return to his hometown in Argentina, where he hopes to develop a model specific to the Argentinian climate.

Seeing live animal exhibits can be a powerful experience, but do they change our behaviors?

Imagine you’re at the San Diego Zoo Safari Park cheetah run. You hear the sounds of awe and wonder as the cheetah demonstrates its amazing speed. The zookeeper tells you more about the cheetah and its ecosystem – an ecosystem that is being negatively impacted by humans. You walk away with tangible ways that you can do your part to reduce your impact – recycling, using less plastic. But when you exit the zoo gates and enter back into the hustle and bustle of life, do you actually make those changes?

Nicolette and Ebony, the raven, at Moorpark College in 2007.

Working under the advisership of Dr. Shawn Rowe in OSU’s College of Education, Nicolette Canzoneri is passionately pursing a Master of Science degree in Environmental Sciences with research centered around the idea of free-choice learning – or, the education that happens outside of a formal school environment. The menagerie of animals that zoos and aquariums have historically been known for has transitioned in recent years to conservation efforts. Instead of a spectacle, the animals – often rescued and unable to be re-entered into their natural environment – act as ambassadors for their ecosystems. This summer, Nicolette will be conducting a three-part project to get to the heart of human behavior changes based on interactions with live animal exhibits at zoos and aquariums.

First, Nicolette will be interviewing education directors and animal care supervisors to understand how the education programs are designed to target pro-environmental behavior. She will then observe the programs to determine the degree to which they align with the intended educational and behavioral goals. Despite the nuances of evaluation, Nicolette then plans to discover the if, how and why of evaluations being used to determine effectiveness of these educational programs. Ultimately, she hopes that her research can help to fill the knowledge gaps between theories and principles in applied behavioral studies and their implementation in free-choice learning.

Nicolette with her Animal Behavior students at Moorpark College in 2015.

Nicolette brings a wealth of experience in animal training and applied behavioral psychology to her research. As a teenager Nicolette knew that she wanted to work with animals, but it wasn’t until she found herself watching the Animal Planet reality TV show Moorpark 24/7 that she realized animal training was part of her calling. Nicolette went on to pursue her dream by obtaining her Exotic Animal Training & Management degree at the prestigious Moorpark College near Los Angeles, CA. Through the twists and turns of her career, Nicolette has since obtained a bachelor’s degree in Applied Behavioral Analysis at California State University, Sacramento and volunteered, interned, and worked in some interesting places along the way including as a dog trainer in Austria, an animal trainer at the Playboy Mansion, and most recently training dolphins for reconnaissance for the United States Navy.

Nicolette with her two dogs in San Diego, 2016.

Join us on Sunday, June 17 at 7 PM on KBVR Corvallis 88.7 FM or stream live to dive deeper into Nicolette’s free-choice learning research and journey to graduate school.