Tag Archives: Seascapes

Exercise 2: Using Neighborhood Analysis to Identify Relationships Between Seascape Classes and Rockfish Abundance Hotspots

Background and Question Asked

In Exercise 1, different interpolation methods were used to create a heat map of rockfish abundance based off of a large collection of point data. That blog discussed some of the challenges that arose while attempting to use a time series of point data with many points in close proximity to one another (if not overlapping). The exploring was in many ways successful: it was discovered that the Kriging method provided a more robust representation of the data than Inverse Distance Weighting. However, in the time since that post was published, my interpolation methods have been refined:

  • Instead of using the entire time series as an input for the interpolation, four individual years were selected to represent the whole dataset (2003, 2007, 2011, 2015). Kriging was then used to create heat maps for each individual year.
  • Additionally, the union tool was used to remove the land boundaries from the environment so that the interpolation only affected parts of the ocean
  • The symbology of the abundance point data was synced across all four years being used in the analyses so that they could be easily compared to one another
  • The symbology of the interpolated heat maps was also modified to be consistent throughout the analyses

For this exercise, I plan to compare my new, interpolated data to an already existing set of data, effectively comparing my two variables. Specifically, I hope to answer the question “Is there a spatial relationship between areas of significantly high and low rockfish abundances and specific seascape classes?”

An example of the most recent Kriging output using the 2007 data.

Name of Tool or Approach Used

I will be using a neighborhood analysis to seek an answer to this question. The neighborhood analysis requires taking areas of interest and examining the environmental conditions around that area from the perspective of another variable. By varying the distance from your original point of interest, a researcher is able to infer about the spatial relationship between the two variables.

Methods

Data Used

  • “Points of Interest” chosen from plot below
  • Buffers created around points of interest at 5km, 10km, and 25km radii
  • YOYRock Kriging Abundance Interpolation for 2007
  • Seascape NetCDF Raster File for May 5th, 2007

Rockfish abundance plotted against water column depth for trawls from 2007.

The first thing that was needed to complete this analysis was points of interest. I chose to use four points form the year 2007, as the data from this year provided the largest spatial footprint of all of the years of interest. Two of the points represented trawls that found significantly high rockfish abundance, and the other two represent trawls which found no rockfish. All four points vary spatially and physically (latitude, longitude, water column depth, etc). All points were selected from interpolated areas with different modeled outputs. Next, circular buffers were created around each point of interest with 5km, 10km, and 25km radii.

Map showing Points of Interest with circular buffers overlaid on seascape NetCDF file.

In order to use the overlay tool in ArcGIS, two polygon features are needed. In order to convert my NetCDF Raster files into a polygon, I used the Raster to Polygon tool. Once the seascape classes were converted to polygons, the Intersect tool was used to measure the shape area of each seascape class within each buffer. Those statistics were then converted to .xlsx files and summarized in Excel.

Results and Discussion

Example of data after Raster to Polygon and Intersect tools used

The neighborhood analysis found evidence that specific seascape classes may have impacted young of the year rockfish abundances in the locations selected to be a part of this analysis.

The low-abundance trawls were dominated by three seascape classes: Class 14 (Temperate Upwelling Blooms), Class 19 (Subpolar Shelves), and Class 21 (Warm, Blooms, high Nutrients). While there were more classes represented overall by the high abundance trawls, those areas were mostly dominated by two seascape classes: Class 7 (Unnamed) and Class 12 (Subpolar Nutrient). Additionally, there was very little overlap between the two areas – the only seascape class that appeared in both the high abundance radii and the low abundance radii was Class 14. Further analyses would be needed to determine if these trends are representative to the entire region or year, but this neighborhood analysis provides results that give us a place to start. Overall, I found this analysis to be extremely useful despite the number of steps needed to make it work. In addition to working in GIS normally, the data type of my seascapes had to be changed and much of my analysis had to be done in Excel, as ArcGIS cannot summarize key statistics. However, I feel as though streamlining this method could be done now that I am familiar with it.

Examining the Spatial Relationships between Seascapes and Forage Fishes

Description of Research Question

My objective is to study the spatial relationships between sea-surface conditions and assemblages of forage fish in the California Current System from 1998 to 2015. Forage fish are a class of fishes that are of importance to humans and resource managers, as they serve as the main diet for economically and recreationally valuable large-game fishes. Using a combination of remotely sensed and in-situ data, sea-surface conditions can be classified into distinct classes, known as “seascapes,” that change gradually over time. These seascapes, which are based on a conglomeration of measurable oceanographic conditions, can be used to infer conditions within the water column. My goal is to determine if any relationship exists between forage fish assemblages and certain seascape classes by examining the changes in the spatial patterns related to each over time. Forage fish assemblage may be related to seascapes as certain seascape classes may correspond to physical (temperature) or biological (chlorophyll concentration) conditions, either on the surface or in the water column, which happen to be favorable for a specific species or group of species.

My question can be formatted as: “How is the spatial pattern of forage fish assemblage in the California Current System related to the spatial pattern of seascapes based on the sea-surface conditions used to classify the seascapes (temperature, salinity, and chlorophyll)?

Description of Data

Midwater trawls have been conducted annually by the National Oceanic and Atmospheric Administration’s (NOAA) Southwest Fisheries Science Center (SWFSC) in an attempt to monitor the recruitment of pelagic rockfish (Sebastes spp.) and other epipelagic micronekton at SWFSC stations off California. The trawls have informed a dataset that represents overall abundance of all midwater pelagic species that commonly reside along the majority of the nearshore coast of California from 1998 to 2015. Each trawl contains both fish abundance, recorded in absolute abundance, and location data, recorded in the form of latitude and longitude. The dataset also includes a breakdown of species by taxa, which will be used to determine if a fish is a “forage fish.”

Seascapes have been classified using a combination of in-situ data (from the trawls) and remotely sensed data from NASA’s MODIS program. Seascapes were classified using the methods described in Kavanaugh et al., 2014 and represent the seascape class in the immediate area that each trawl occurred. Seascapes are classified at 1 km and 4 km spatial resolution and at 8-day and monthly temporal resolution. Each seascape has been assigned an ID number which is used to identify similar conditions throughout the dataset.

The map below shows the locations of every trawl over the course of the study.

Figure 1: Map showing all trawl sites contained in the dataset. Trawls occurred at a consistent depth using consistent methods between and including the years of 1998 and 2015

Hypotheses

I hypothesize that any measurable spatial changes in the spatial extend of certain seascape classes will also be identifiable in the spatial variability of forage fish assemblage over time. Preliminary multivariate community structure analysis has shown some statistically significant relationships between certain species and certain seascape classes using this data. If spatial patterns do exist, I expect there to be some relationship between the surface conditions and the fish found at depth of the midwater trawls.

Hypothesis: I expect the spatial distribution of forage fish species to be related to spatial distribution of seascape conditions based on the variables used to classify the seascapes (temperature, salinity, chlorophyll).

Potential Approaches

I hope to utilize the tools within both R and the ArcGIS Suite of products to identify and measure spatial patterns in both seascape classes and forage fish assemblages over the designated time period. I also aim to run analyses to determine if any relationship exists between the variability in spatial extent of each variable. These analyses will be used to supplement the previously completed multivariate community structure analyses done on these data.

For Exercise 1, I will identify and test for the spatial patterns of the forage fish family Gobiidae (Goby) and Seascape Class 10, as initial indicator species analyses indicated that there may be a relationship between the two. In Ex. 2, cross-correlation and/or GWR will examine relationships between these patterns.

Expected Outcome/Ideal Outcome

Ideally, I would like to determine and define the relationship between seascape classes and forage fishes in the California Current System over the designated period of time. Any sort of definitive answer, positive, negative, or none, provides valuable insight into the relationships between this remotely sensed data and these fishes. If that claim could be bolstered by a visual which outlines the relationship between my variables (or lack thereof), that would be icing on the theoretical cake.

Significance of Research

Measuring the predictability of forage fish assemblage has wide-ranging impacts and could be found useful by policymakers, fishermen, conservationists, and even members of the general public. Additionally, this research can be used to underscore the importance of seascape-based management or seascape approaches to ecology or management. This research could also be used as inspiration for future studies about different species, taxa, or geographic locations.

Level of Preparation

I completed a minor in GIS during my undergraduate studies, but have not had to utilize those skills for about 15 months. After some time, I believe that I will be extremely comfortable using the software. I have basic exposure to R software (mostly in the context of statistical analysis) and have used CodeAcademy to further my understanding of Python. I did some image processing during my undergraduate studies as well, but am not particularly comfortable with that set of skills. I have used leaflet to embed my maps and create time series before, so that could be an option for this work.

WORKS CITED

Kavanaugh M. T., Hales B., Saraceno M., Spitz Y.H., White A. E., Letelier R. M. 2014. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology, Progress in Oceanography, Volume 120, Pages 291-304, ISSN 0079-6611, https://doi.org/10.1016/j.pocean.2013.10.013.

Sakuma, K., Lindley, S. 2017. Rockfish Recruitment and Ecosystem Assessment Cruise Report.  United States Department of Commerce: National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

-Willem Klajbor, 2019