Tag Archives: Remote Sensing

The Geography of Exclusion

Description of the research question:

My research focuses on vulnerable populations, specifically refugees and internally displaced peoples. This is a small part of a larger project funded by NASA, “Mapping the Missing Millions” and is largely defined as the “geography of exclusion.” I am hoping to understand why settlements have been excluded from global population datasets; we know that this happens often, but not specifically the mechanisms of why these settlements are missing from these datasets. Hence, my question recognizes that the classification methods used for population datasets are imperfect and I’m seeking to understand why they are imperfect. This means I will need to understand the spatial distribution of the settlements identified in both sets and analyze the intersections and exclusions between them and understand why these exist. This might also mean figuring out how close an OpenStreetMap settlement is to an urban center or a road and figuring out if these metrics affect the classification.

My research question is as follows:

How do the settlements identified by OpenStreetMap (OSM) compare to settlements identified in global population datasets via classification and what about these classification metrics fails to detect settlements known to OSM?

Description of the dataset:

The crux of my data is a comparison of UNHCR and OpenStreetMap (OSM) to a global population dataset, Global Human Settlement Layer (GHSL). OpenStreetMap is a global open source dataset and contains both point and polygon information. Through the UNHCR point data that identifies settlement locations, I have identified boundaries that are attributed as delineating refugee settlements. A potential disclaimer with OSM data is that it’s an open source dataset contributed to by volunteers. This means that attribution can be unclear or inconsistent, despite validation. I can also use other OSM data like roads and urban areas to expand my spatial analyses for a proximity assessment.

I will also make use of the rich Landsat and Sentinel data available for my spectral analysis. This will either be at 30 meter resolution (Landsat) or 10 meter resolution (Sentinel). The temporal extent depends on the satellite: Landsat 7 is from 2000 and forward; Landsat 8 is 2014 to present, and Sentinel-2 was launched in 2015.

For this class, I will focus my analysis on Uganda, given its high prevalence of refugee settlements and extensive OSM dataset with a strong Humanitarian OpenStreetMap Team presence.

Figure 1. Layoun Refugee Camp boundary (blue) in an urban false color composite of Landsat 8 imagery.

Figure 2. Global Human Settlement Layer overlay with Layoun Refugee Camp boundary. White indicates measured human settlement.

The images above are an example of a refugee settlement in Algeria. The area in blue in the NW corner is the settlement; the area in the SW is a nearby town. However, this settlement is not identified in the Global Human Settlement Footprint, although this specific settlement has existed since at least 2001.

Hypotheses:

I expect that settlements not detected by GHSL will have a different and less distinct spectral signature than settlements detected by GHSL. By “distinct,” I am referring to how different the spectral signature in the settlement is to the spectral signature immediately around the settlement. By “different” spectral signature, I am referring to the concept that the classification in GHSL is looking for a specific type of spectral signature, and that this does not match the spectral signature found in the settlements indicated by OSM. I also expect that settlements not detected by GHSL will be further from known roads and high density urban areas than settlements detected by GHSL.

Approaches & Analyses:

With my OSM data, I can use these vector boundaries to analyze the spatial and spectral patterns of these settlements. I will analyze the size of these settlements, the spectral signature in these settlements, proximity to resources (roads, water, cities).

With the global population dataset, I can identify pixel clusters that indicate settlements, and perform similar analysis to identify size, spectral signature, and proximity to resources.

While these analysis can help me identify the differences between these settlements, I also still need to analyze the classification methods of GHSL to understand why these differences might be significant and have resulted in different settlement detections.

Expected Outcome:

I will need to present the statistical relationships between the refugee settlements that are and are not detected in my target population dataset. Because I’m also seeking to understand why these settlements are excluded in the classification, I will need to connect the spatial relationships that I find with the classification methods that GHSL uses. This will be a more verbal description, but I plan to make maps to illustrate these spatial relationships and characteristics. These relationships and characteristics include settlement size, border complexity, proximity to roads, and spectral signature.

Significance:

This project addresses the exclusion of settlements and populations within various global datasets. This has a greater relevance given that so much derived data relies on this, whether for distributing aid and resources, analyzing displacement, or understanding human migration. By understanding what factors contribute to the inclusion or exclusion includes settlements in these datasets, more users can understand the limitations of what is possible to detect and where the gaps in population detection is more likely to occur.

Level of preparation:

I have substantial experience with ArcInfo products. I’ve been using ArcGIS Pro for over a year now, and prior to that I spent 2 years working with ArcMap daily in a professional capacity, took three classes that exclusively taught in the ArcDesktop interface, and employed ArcInfo for projects in multiple other classes. My image processing skills are also extensive, ranging from two classes using ENVI Classic, a GIS internship that included georeferencing satellite imagery, and most recently a class and outside research using Google Earth Engine. My experience with R is limited to a summer research project in 2016. I have some basic programming in GIS skills (very limited ArcPy use but recent and frequent ModelBuilder use) and will be learning more throughout this term as a participant in Robert Kennedy’s GIS Programming class.

Examining the Spatial Relationships between Seascapes and Forage Fishes

Description of Research Question

My objective is to study the spatial relationships between sea-surface conditions and assemblages of forage fish in the California Current System from 1998 to 2015. Forage fish are a class of fishes that are of importance to humans and resource managers, as they serve as the main diet for economically and recreationally valuable large-game fishes. Using a combination of remotely sensed and in-situ data, sea-surface conditions can be classified into distinct classes, known as “seascapes,” that change gradually over time. These seascapes, which are based on a conglomeration of measurable oceanographic conditions, can be used to infer conditions within the water column. My goal is to determine if any relationship exists between forage fish assemblages and certain seascape classes by examining the changes in the spatial patterns related to each over time. Forage fish assemblage may be related to seascapes as certain seascape classes may correspond to physical (temperature) or biological (chlorophyll concentration) conditions, either on the surface or in the water column, which happen to be favorable for a specific species or group of species.

My question can be formatted as: “How is the spatial pattern of forage fish assemblage in the California Current System related to the spatial pattern of seascapes based on the sea-surface conditions used to classify the seascapes (temperature, salinity, and chlorophyll)?

Description of Data

Midwater trawls have been conducted annually by the National Oceanic and Atmospheric Administration’s (NOAA) Southwest Fisheries Science Center (SWFSC) in an attempt to monitor the recruitment of pelagic rockfish (Sebastes spp.) and other epipelagic micronekton at SWFSC stations off California. The trawls have informed a dataset that represents overall abundance of all midwater pelagic species that commonly reside along the majority of the nearshore coast of California from 1998 to 2015. Each trawl contains both fish abundance, recorded in absolute abundance, and location data, recorded in the form of latitude and longitude. The dataset also includes a breakdown of species by taxa, which will be used to determine if a fish is a “forage fish.”

Seascapes have been classified using a combination of in-situ data (from the trawls) and remotely sensed data from NASA’s MODIS program. Seascapes were classified using the methods described in Kavanaugh et al., 2014 and represent the seascape class in the immediate area that each trawl occurred. Seascapes are classified at 1 km and 4 km spatial resolution and at 8-day and monthly temporal resolution. Each seascape has been assigned an ID number which is used to identify similar conditions throughout the dataset.

The map below shows the locations of every trawl over the course of the study.

Figure 1: Map showing all trawl sites contained in the dataset. Trawls occurred at a consistent depth using consistent methods between and including the years of 1998 and 2015

Hypotheses

I hypothesize that any measurable spatial changes in the spatial extend of certain seascape classes will also be identifiable in the spatial variability of forage fish assemblage over time. Preliminary multivariate community structure analysis has shown some statistically significant relationships between certain species and certain seascape classes using this data. If spatial patterns do exist, I expect there to be some relationship between the surface conditions and the fish found at depth of the midwater trawls.

Hypothesis: I expect the spatial distribution of forage fish species to be related to spatial distribution of seascape conditions based on the variables used to classify the seascapes (temperature, salinity, chlorophyll).

Potential Approaches

I hope to utilize the tools within both R and the ArcGIS Suite of products to identify and measure spatial patterns in both seascape classes and forage fish assemblages over the designated time period. I also aim to run analyses to determine if any relationship exists between the variability in spatial extent of each variable. These analyses will be used to supplement the previously completed multivariate community structure analyses done on these data.

For Exercise 1, I will identify and test for the spatial patterns of the forage fish family Gobiidae (Goby) and Seascape Class 10, as initial indicator species analyses indicated that there may be a relationship between the two. In Ex. 2, cross-correlation and/or GWR will examine relationships between these patterns.

Expected Outcome/Ideal Outcome

Ideally, I would like to determine and define the relationship between seascape classes and forage fishes in the California Current System over the designated period of time. Any sort of definitive answer, positive, negative, or none, provides valuable insight into the relationships between this remotely sensed data and these fishes. If that claim could be bolstered by a visual which outlines the relationship between my variables (or lack thereof), that would be icing on the theoretical cake.

Significance of Research

Measuring the predictability of forage fish assemblage has wide-ranging impacts and could be found useful by policymakers, fishermen, conservationists, and even members of the general public. Additionally, this research can be used to underscore the importance of seascape-based management or seascape approaches to ecology or management. This research could also be used as inspiration for future studies about different species, taxa, or geographic locations.

Level of Preparation

I completed a minor in GIS during my undergraduate studies, but have not had to utilize those skills for about 15 months. After some time, I believe that I will be extremely comfortable using the software. I have basic exposure to R software (mostly in the context of statistical analysis) and have used CodeAcademy to further my understanding of Python. I did some image processing during my undergraduate studies as well, but am not particularly comfortable with that set of skills. I have used leaflet to embed my maps and create time series before, so that could be an option for this work.

WORKS CITED

Kavanaugh M. T., Hales B., Saraceno M., Spitz Y.H., White A. E., Letelier R. M. 2014. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology, Progress in Oceanography, Volume 120, Pages 291-304, ISSN 0079-6611, https://doi.org/10.1016/j.pocean.2013.10.013.

Sakuma, K., Lindley, S. 2017. Rockfish Recruitment and Ecosystem Assessment Cruise Report.  United States Department of Commerce: National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

-Willem Klajbor, 2019