Tag Archives: invasive grass

Does the spatial arrangement of vegetation cover influence ventenata invasion?

Question Asked

To predict the invasion potential of a species, it is necessary to understand the spatial pattern of the invasion in relation to landscape scale variables. For exercise 2, I explored how the spatial pattern of invasion by the recently introduced annual grass, Ventenata dubia (ventenata) relates to the spatial pattern of vegetation cover categories throughout the Blue Mountain Ecoregion of eastern Oregon.

Tools and Approaches Used

To unpack this question, I performed a neighborhood analysis to explore how the proportion of different vegetation type cover differ at increasing distances from plots with high versus low ventenata cover.

The neighborhood analysis required several steps performed in ArcGIS and in R:

  • I split my sample plot layer in ArcGIS into two layers – one containing plots with only high ventenata cover (>50%) and one containing plots with only low cover (<5%).
  • I buffered each plot by 10m, 50m, 100m, 200m, 400m, and 800m using the “buffer” tool in ArcGIS and then erased each buffer layer by the preceding buffer layer to create “donuts” surrounding each sample points using the “erase” tool in ArcGIS (Fig. 1).
  • I brought in a vegetation cover categories raster file (Simpson 2013) that overlaps with my study area and used the “tabulate area” tool in ArcGIS to calculate the total cover of each vegetation type (meadow, shrub steppe, juniper, ponderosa pine, Douglas-fir, grand-fir, hardwood forest/ riparian, and subalpine parkland) that fell within each buffer for every point. I repeated this for high and low ventenata points.
  • Finally, I consolidated the tables in R and created a line graph with the ggplot2 package to plot how the proportion of vegetation type differed by buffer distance from point (Fig. 2). Cover represents percent cover of each vegetation type at each buffer distance. Error bars at each distance represent standard error. VEDU refers to the plant code for Ventenata dubia (ventenata).

I was also curious to how the high and low points differed from random points in the same area. To explore this I:

  • Created 110 random points that followed the same selection criteria of 1000m proximity to fire perimeter used to select the ventenata sampling points.
  • Repeated steps 2 through 4 above to graphically represent how vegetation cover differs as a function of distance from these random points in relation to low and high ventenata points (Fig. 3).

Results & Discussion

My analysis revealed that vegetation type differs between high and low ventenata sites and random sites within the study area. The high ventenata plots were located entirely in ponderosa pine and shrub steppe vegetation types, but as distance increased from the plots, the distribution of about half of the vegetation types became more evenly distributed (Fig. 2). Ponderosa covers over 75% of the high ventenata 10m buffer areas with shrub steppe making up the remaining 25%. However, as distance increased, ponderosa cover dropped sharply to under 35% at 400m. Shrub steppe gradually declined throughout the 800m distance, and was surpassed by grand fir and Douglas fir by 800m. Meadows covered about 10% of the 50m buffer but declined to about 5% by the 400m buffer. The remaining vegetation types, juniper, riparian, and subalpine fir, were consistently under 5% cover throughout the buffer analysis.

In the low ventenata sites, shrub steppe vegetation was the most dominant, but the distribution was spread more evenly across the vegetation types than in the high ventenata sites (Fig. 2). Shrub steppe vegetation droped from 45% to 30% from the 10m to the 50m buffer, and then remained relatively constant throughout the remaining buffer distances. Like the high ventenata sites, grand-fir gradually increased in cover throughout, becoming the most dominant vegetation type of the 800m buffer. Unlike the high sites, ponderosa pine made up only about 10% of each buffer. Riparian vegetation was the only cover type that remained 0 throughout all the buffers.

In the random sites, the distributions of vegetation type were steady throughout the 800m, with only small fluctuations in cover with increasing distances (Fig. 3). Shrub steppe vegetation type was the highest at about 30% throughout, followed by juniper, ponderosa pine, and grand fir at about 20% cover.

This analysis demonstrates that ventenata could be dependent on specific vegetation types not only at the sample location, but also in the vicinity surrounding the sample area. This is evident in the high ventenata analysis where ponderosa pine cover remains much higher than the low sites and the random sites throughout the 800m buffered area. This analysis also depicts my sample bias as it demonstrates which community types I was targeting for sampling (shrub steppe and dry forest communities), which may not be representative of the area as a whole (as demonstrated in the random points analysis).

Critique of Method

The neighborhood analysis was a useful way of visualizing how vegetation type changes with distance from high and low ventenata points and may have helped uncover the importance of large areas of ponderosa pine as a driver of invasion; however, the results of the analysis could be a relic of my sampling bias towards shrub steppe and dry forest communities rather than an absolute reflection of community drivers of ventenata. The vegetation layer that I used was also not as accurate or as detailed as I would have liked to capture the nuance of the different shrub steppe and forest community types that I was attempting to differentiate in my sampling. If I were to do this again, I would try to find and use a more accurate potential vegetation layer with details on specific community attributes. Additionally, the inclusion of error bars was not possible using the “multiple ring buffer” tool in ArcGIS, so, I instead had to make each buffer distance as a separate layer and erase each individually to maintain the variation in the data.  I like the idea of the random points as a sort of randomization test; however, more randomizations would make this a more robust test. With more time and more knowledge of coding in ArcGIS/ python, I would attempt a more robust randomization test.

 

Simpson, M. 2013. Developer of the forest vegetation zone map. Ecologist, Central Oregon Area Ecology and Forest Health Program. USDA Forest Service, Pacific Northwest Region, Bend, Oregon, USA