Tag Archives: Hot Spot Analysis

Spatial Distribution of Trees by Height Class, Slope and Elevation in the HJ Andrews Forest

Guiding Questions: How do distances between trees differ depending on tree height? How does the spatial pattern of tall trees relate to the spatial pattern of slope and elevation?

Methods: I used a combination of ArcMap, QGIS and R to perform analyses and view results. I used the results of my previous distance analysis within the HJ Andrews Forest, which grouped individual trees into ten height classes and calculated the mean distance between trees within the same height class, to correlate tree spacing with other spatial phenomena. I wanted to know if hot spots in within class tree spacing correlated with hot spots in tree height, so I examined hot spots and cold spots of tree distances within each height class and compared them to tree heights, slope and elevation. Height class 1 is the shortest class of trees and height class 10 is the tallest class of trees.

I used the Hot Spot Analysis Tool in the Arc Toolbox > Spatial Statistics Tools > Mapping Clusters > Hot Spot Analysis (Getis-Ord Gi*) to perform a Hot Spot Analysis on each of the ten height classes by mean distance to the 30 closest trees of the same height class. In the context of this analysis, the interpretation of a hot spot is that it is a region of greater than expected distances between trees of the same height class. For example, in the shortest height class, 1, hot spots are regions of greater than expected mean distance between a short tree and the 30 closest short trees. Cold spots would then be regions of closer than expected mean distance between short trees.

The Hot Spot Analysis in ArcMap used a self-generated distance band of 113m for my original hot spot analysis of the global dataset (not broken up by height class), so I decided to use a distance band of 100m for each subsequent hot spot analysis. Each height class has a different number of total trees in it, so by holding the distance band constant, I hoped to avoid influence from any differences in total number of trees between height classes.

After viewing the hot spot results, I plotted the z-scores of heights for each height class against the z-scores of the distances between trees to visually examine their relationship. If both heights and distances between trees were perfectly normally distributed, one would expect a circular distribution on the density plots with a slope of zero.

I then compared the mean slopes, elevations, and standard deviation of slopes and elevation within height classes across the entire forest. Since HJA is a research forest with many different management areas, including harvested patches and research plots, I limited the next part of the analysis to only within control areas of the forest. I downloaded the most recent (2014) land use designations from the HJA data repository (http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=GI008). For this analysis, I used Entity Title 3: Reserved areas (controls) within the Andrews Experimental Forest. I compared slopes and elevations within the control plots only by height class, to see if there were differences between the global dataset and the control regions of the forest.

Results:

The density plots of height z-score versus distance z-score revealed a different pattern between smaller height classes of trees and tree spacing than the relationship between larger height classes of trees and tree spacing. As we go from shorter height classes of trees to taller height classes, the density plot distributions change (Figures 1-10). There is strong evidence of positive correlation between hot spots of short trees and hot spots of distance between short trees, but from height class 6-10, there is little to no evidence of a relationship between hot spots of trees and distance between them. Tall trees are more or less distributed randomly throughout the forest.

Figure 1

 

Figure 2

 

Figure 3

 

Figure 4

 

Figure 5

 

Figure 6

 

Figure 7

 

Figure 8

 

Figure 9

 

Figure 10

There is clearly some structure to the density plots (especially in height classes 1-5), so we can assume that the trees are not randomly distributed and that there is a relationship between height and distance between trees. I compared mean and standard deviation of slope, as well as mean and standard deviation of elevation for each height class of trees (Table 1). Mean slopes do not significantly differ between height classes, so slope is likely not a main driver of tree height. However, there is some evidence that tree heights differ at lower and higher elevations, with the shortest height class of trees at a mean elevation of 1014 m, and the tallest height class at a lower mean elevation of 831 m. It’s important to note that mean elevations have large standard deviations, so the trend may not be as strong as it first appears. I wanted to know if there was more evidence for this pattern, so I calculated the same statistics for subsets of the hotspot analyses constrained to only the control areas of the forest (Table 2) to get an idea of how management may or may not influence the relationship between tree height and tree spacing throughout the forest. Mean slopes and elevations, accounting for standard deviation from the mean, do not differ significantly between the global and control datasets, meaning that the control regions are reasonable representations of the rest of the forest. To examine this further, I examined the same data for the entire forest excluding the control areas (Table 3). The same pattern holds between the three datasets; class 10 is the only class that is consistently at lower elevations across the forest. I made two density plots to display this relationship. Figure 11 shows the distribution of elevation for the shortest height class (class 1) of trees (green) versus the global dataset of all trees (red). The short trees follow the same distribution as the rest of the dataset, meaning that they are dispersed more or less evenly across elevations. Figure 12 shows the distribution of the tallest height class of trees (class 10; light blue) by elevation versus the global dataset of trees by elevation (red). This clearly shows that tall trees are not distributed at higher elevations.

Figure 11. Density of trees by elevation in height class 1 (shortest trees; green) versus global dataset of all trees (red).

 

Figure 12. Density of trees in height class 10 (tallest trees; light blue) versus global dataset of all trees (red) by elevation.

Table 1: Global dataset

Height Class Mean Slope SD Slope Mean Elevation (m) SD Elevation
1 23 11.7 1014 294
2 23 11.6 1008 291
3 25 11.6 990 295
4 25 11.5 948 291
5 25 11.3 931 293
6 26 10.9 972 291
7 27 10.5 982 250
8 26 10.6 959 221
9 25 10.7 926 207
10 23 11.2 831 197

 

Table 2: Subset of control regions

Height Class Mean Slope SD Slope Mean Elevation (m) SD Elevation
1 27 11.9 1104 317
2 27 11.5 1136 328
3 28 11 1157 329
4 28 10.8 1143 311
5 28 10.2 1133 285
6 28 10 1071 262
7 28 10 992 228
8 27 10.6 955 193
9 26 10.8 935 187
10 24 11 869 189

 

Table 3: Global dataset excluding control regions

Height Class Mean Slope SD Slope Mean Elevation (m) SD Elevation
1 22 11.4 991 284
2 22 11.4 979 273
3 24 11.6 952 272
4 24 11.5 902 266
5 24 11.5 867 265
6 25 11.3 908 290
7 26 10.7 973 267
8 25 10.5 964 242
9 23 10.4 919 221
10 22 11.2 793 198

 

Critique of the method:

A criticism of hot spot analysis is that it’s basically a smoothing function that places a focal around an area but does not account for the distribution of values within that area. So, the tallest tree in the dataset could be in cold spot (region of shorter than expected trees) and the hot spot analysis would give you no indication of that, so one may miss out on potentially useful/interesting information.

This is only a cursory look at the data and a next step is to more closely examine how slope, elevation and aspect influence distribution and height of trees, particularly within the control areas of the forest.

Fire Refugia’s Effects on Clustering of Infected and Uninfected Western Hemlock Trees

Overview

For Exercise 1, I wanted to know about the spatial pattern of western hemlock trees infected with western hemlock dwarf mistletoe. I used a hotspot analysis to determine where clusters of infected and uninfected trees were in my 2.2 ha study area (Map 1). I discovered a hot spot and a cold spot, indicating two clusters, one of high values (infected) and one of low values (uninfected).

In my study site, 2 fires burned. Once in 1829, burning most of the stand, and then again in 1892, burning everywhere except the fire refugia (polygons filled in blue). This created a multi-storied forest with remnant trees located in the fire refugias. One component of the remnant forest are infected western hemlocks. These remnant hemlocks serve as the source of inoculum for the hemlocks regenerating after the 1892 fire.

For Exercise 2, my research question was: How does the spatial pattern of fire refugia affect the spatial pattern of western hemlock dwarf mistletoe?

I predicted that a cluster of infected western hemlocks are more likely to be next to a fire refugia than a cluster of uninfected trees. In order to assess this relationship, I used the geographically weighted regression tool in ArcMap.

Geographically Weighted Regression

Geographically weight regression (GWR) works by creating a local regression equation for each feature in a data set you want to analyze, using an explanatory variable(s) to predict values for the response variable, using the least squares method. The Ordinary Least Squares (OLS) tool differs from GWR because OLS creates a global regression model (one model for all features) whereas GWR creates local models (one model per feature) to account for the spatial relationship of the features to each other. Because the method of least squares is still used, assumptions should still be met for statistically rigorous testing. The output of the GWR tool is a feature class of the same type as the input, with a variety of attributes for each feature. These attributes summarize the ability of the local regression model to predict the actual observed value at that feature’s location. If you have an explanatory variable that explains a significant amount of the variation of the response variable, this is useful for seeing how its coefficient varies spatially.

Execution of GWR

To use this tool, I quantified the relationship between the trees and the fire refugia. I used the “Near” tool for this to calculate the nearest distance to a fire refugia polygon’s edge. This was my explanatory variable. My response variable was the z-score that was output for each tree from the Optimized Hot Spot Analysis. Then I ran the GWR tool. I then used the Moran’s I tool to check for spatial autocorrelation of the residuals. This is to check the clustering of residuals. Clustering indicates I may have left out a key explanatory variable. The figure below displays my process.

I tested the relationship between nearest distance to a fire refugia polygon’s edge and the z-score that was output for each tree from the Optimized Hot Spot Analysis using OLS, which is necessary to develop a well specified model. My R2 value for this global model was 0.005, which is incredibly small. Normally I would have stopped here and sought out other variables to explain this pattern, but for this exercise I continued the process. 

Results

This GWR produced a high global R2 value of 0.98 (Adj R2 0.98) indicating that distance to refugia does a good job of explaining variance in the spatial pattern of infected and uninfected trees. However, examining the other metrics for the local model performance gives a different picture of model performance.

Map 2 displays results for the coefficients for the explanatory variable of distance to nearest refugia. As this variable changes, the z-score increases or decreases. These changes in z-scores indicate a clustering of high or low values. From examining the range of coefficient values, the range is quite small, -0.513 to 0.953. This means that across my study site, the coefficient only changes slightly from positive to negative. In the north western corner, we see a cluster of positive coefficient values. Here, as distance to refugia increases, the z-score of trees increases, predicting a clustering of infected trees. These values are associated with high local R2 values (Map 4). In other places of the stand we see slight clustering of negative coefficients, indicating distance to refugia decreases the z-score of trees, predicting a clustering of uninfected trees.

Map 3 displays the standardized residuals for each tree. Blue values indicate where the local model over-predicted what the actual observed value was, and red values are under-predictions. When residuals from the local regression models are distributed randomly (i.e. not clustered or dispersed) over the study area, then the geographically weighted regression model is fit well, or well specified. The residuals of the local regression models were significantly clustered. (Moran’s Index of 0.265, p-value of 0.000, z-score of 24.344). Because we can observe clustering in my study area of residuals, there is another phenomenon driving the changes in z-scores; in other words, driving the clustering of infected and uninfected trees.

From the previous two map evaluations I saw that the distance of a tree to fire refugia was not the only explanatory variable necessary to explain why infected and uninfected trees clustered. Map 4 displays the local R2 values for each feature. The areas in red are high local R2 values. We see the northwestern corner has a large number of large values which correspond to a cluster of small residuals and positive coefficients. Here, distance to fire refugia explains the clustering of infected trees well. The reverse is observed in several other places (clusters of blue) where distance to fire refugia does not explain why infected or uninfected trees cluster. In fact the majority of observations had a local R2 of 0.4 or less. From this evaluation, I believe this GWR model using distance to refugia does a good job of explaining the clustering of infected trees, but not much else.

Critique

GWR is useful for determining how the coefficient of an explanatory variable can change across an area. One feature in a specified area may have a slightly different coefficient from another feature, indicating these two features are experiencing different conditions in space. This allows the user to make decisions about where the explanatory has the most positive or negative impact. This result is not something you can derive from a simple OLS global model. This local regression process is something you could do manually but the tool in ArcMap makes this process easy. The output of GWR is also easy to interpret visually.

Some drawbacks are that you need to run the OLS model first for your data to determine which variables are significant in determining your response variable. If not, then a poorly specified model can lead to inappropriate conclusions about the explanatory variable (i.e. high R2 values). Also, the evaluation of how the features interact in space is not totally clear. The features are evaluated within a fixed distance or number of neighbors, but there is no description for how weights are applied to each neighboring feature. Lastly, for incidence data, this tool is much harder to use if you want to determine what is driving the spatial pattern of your incidence data. Some other continuous metric (in my case a z-score) must be used as the response variable, making results harder to interpret.

Model Results Follow-Up

After finding that distance to a refugia was not a significant driver for the majority of trees, I examined my data for other spatial relationships. After a hotspot analysis on solely the infected trees, I found that the dispersal of infected trees slightly lined up with the fire refugia drawn on the map (Map 5).

Among other measures, forest structure was used to determine where fire refugia were located. Old forest structure is typically more diverse vertically and less clustered spatially. Also infected western hemlocks are good indicators of fire refugia boundaries because as a fire sensitive tree species, they would not survive most fire damage and the presence of dwarf mistletoe indicates they have been present on the landscape for a while. From the map we can see that the dispersal of infected trees only lines up with the refugia in a few places. This mis-drawing of fire refguia bounds may be a potential explanation for under-performance of the GWR model.

Exercise 1: Ventenata spatial clustering

Question Asked

I am interested in understanding the invasion potential of the recently introduced annual grass ventenata (Ventenata dubia) across eastern Oregon. Here I ask, what is the spatial pattern of the ventenata invasion across the Blue Mountains Ecoregion of eastern Oregon?

Tools and Approaches Used

To address this question, I (1) tested for spatial correlation at various distances using Moran’s I spatial autocorrelation coefficients plotted with a correlogram, and (2) performed hot-spot analysis (Getis-Ord Gi) to identify statistically significant clusters of areas with high and low ventenata cover.

Description of Analysis Steps

1a) Moran’s I: To compute Moran’s I spatial autocorrelation coefficient for all of my sample units, I used the “ape” package in R version 3.5.1. The first step to this analysis was to convert the ventenata data and associated coordinates into a distance matrix. Once the distance matrix was created, the Moran.I function computed the observed and expected spatial autocorrelation coefficients for the variable of interest (ventenata abundance). The function produces a test statistic that tests the null hypothesis of no correlation. See Gittleman and Kot (1990) for details on how the Moran.I function calculates Moran’s I statistics.

1b) Correlogram: I plotted a correlogram using Moran’s I coefficients with increasing distances (lags) to examine patterns of spatial autocorrelation in my data. I used the correlog function in the spdep package in R to plot a correlogram with lag intervals of 10,000m. The function has the option of randomly resampling the data at each increment to incorporate statistical significance. This randomization tests the null hypothesis of no autocorrelation. I ran the function with resamp = 100. Black points on the correlogram are indicative of Moran’s I values significantly larger or smaller than expected under the null hypothesis.

2) Hot Spot Analysis: I used the hot spot analysis (Getis-Ord Gi*) tool in Arc GIS to identify statistically significant clusters of areas with high and low ventenata cover across my study area. The tool produces z-scores and p-values that test the null hypothesis of a random distribution of high and low values rather than clusters of high or low values. High z-scores indicate clusters of high values and low z-scores indicate clusters of low values. Low p-values indicate that these clusters are more pronounced than would be expected by chance.

Results

1a) Moran’s I: The Moran’s I spatial autocorrelation coefficient estimate for all of the points across the entire sample area was 0.3 ± 0.05 (p < 0.3). This value is not particularly informative, as it only indicates that the data is positive spatially autocorrelated, but does not provide information to describe the spatial pattern. I chose to follow the Moran’s I up with a correlogram to uncover the spatial pattern driving the autocorrelation.

1b) Correlogram: The Moran’s I spatial correlogram shows a general trend of decreasing autocorrelation from 0 to about 70,000m where sudden jumps in Moran’s I values occur to up to ~0.3. Following this jump, the correlation decreases to -0.5 to -0.2 between 120,000 and 152,000m, then increases to ~0.3 at 170,000m, decreases to almost -1.0 just after 200,000m, and finally increases to almost 1 at 220,000m. The general trend appears to be decreasing from 0.2 to -0.9 at 220,000m with some high peaks interspersed. These high and low peaks indicate distinct ventenata patches distributed throughout the study area, suggesting a clustered spatial pattern of the ventenata invasion. The extreme high and low values at distances over 200,000 are likely a result of the few sample units being compared at these distances, thus these are not so informative of the overall spatial pattern.

2) Hot Spot Analysis: Hot spot analysis in ArcGIS depicted clusters ranging from high ventenata cover (large red circles) to low ventenata cover (small blue circles) across my study area (Fig. 2) using the calculated z-scores and p-values for each sample unit. The resulting map shows distinct clusters of high, low, and moderate ventenata cover distributed across seven sampled burn perimeters (displayed in light orange). The highest cover clusters are all located within the Ochoco and Aldrich Mountains in the center of the study region. The fires on the perimeters of the region exhibited clusters of low to no ventenata cover.

Critique of Methods Used

When run on all of the data across the entire region, Moran’s I did not produce a useful statistic, indicating only if the data was spatial autocorrelation without indicating a spatial pattern. However, when visualized with a correlogram at varying distances, the correlation coefficients suddenly told a story of spatial clustering. The results from the hot spot analysis reinforce the findings from the correlogram by clearing depicting clusters on a map of the study area. The hot spot analysis further explores these results by mapping the clusters of high and low ventenata cover on top of each of my sample units, providing a useful visualization of exactly where the clusters of high and low cover fall across the region.

References

Gittleman, J. L. and Kot, M. (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Zoology39, 227–241.

 

Exercise 1: What is the spatial pattern of western hemlock dwarf mistletoe at the Wolf Rock reference stand?

For Exercise 1, I wanted to analyze the spatial pattern of western hemlock dwarf mistletoe infections in live western hemlocks on my 2.2 ha reference stand (Wolf Rock). This was without considering any attributes of the western hemlock trees themselves. Simply, what was the spatial pattern of infection?

To answer this I used the “Average Nearest Neighbor” tool in the Spatial Statistics toolbox in ArcMap. This tool calculates a z-score and a p-value from that z distribution. This is a commonly used method in dwarf mistletoe literature for assessing the clustering of infection centers. Also, the equations for this tool assume that points are free to locate wherever in space and that there are no barriers to spread.

ArcMap makes running these analyses very simple so I created a selection of infected trees (red dots), created a new feature, and then ran the tool. The p-value from my test was 0.097 and my Nearest Neighbor Index was 0.970, indicating that the spatial pattern of the infections are somewhat clustered with an alpha of 0.10.

Average Nearest Neighbor is a good test for analyzing whether or not a set of coordinates are clustered. The degree of clustering of may be harder to interpret as a lower p-value may not necessarily mean points are more clustered. Also I was unable to see where my clusters are, and if my intuitions match the analysis (see map). One other important consideration is the study area. Changes in analysis area can drastically change the result of your clustering analysis (i.e. larger study areas may make data look more clustered). Lastly, there was no option for edge correction. This may have skewed some of the clustering results along the edge of my study site and 2.2 ha is pretty small to be subsampled without losing a lot of my data.

Prologue

After confirming that my infections were clustered, I wanted to see if the pattern I saw in my map, was actually on the ground. I wanted to know, where are infected trees clustered with infected trees and where are uninfected trees clustered with uninfected trees? Again, this was without considering any attributes of the western hemlock trees themselves.

I used the “Optimized Hot Spot Analysis” tool in the Mapping Clusters toolbox to analyze the incidence of infection data (0 = absence, and 1 = presence). The Optimized Hot Spot Analysis tool can automatically aggregate incidence data that are normally not appropriate for hot spot analysis. It also calculates several other metrics for me that made analysis easy. I could take these automatically calculated metrics and alter them in a regular hot spot analysis if needed.

This map displays clustering that matched up closely with my intuitions from Map 1. On the left, the blue values show a cluster of uninfected trees that are closely clustered with other uninfected trees. The larger swath on the right show a cluster of trees that are closely clustered with other infected trees. In the middle a mix of uninfected trees and infected trees are mixed without displaying any significant clustering. Lastly, small clusters in the top left and bottom left of infected trees were identified. These clusters may be edge of larger clusters outside my stand, or lightly infected trees that are starting a new infection center. These results will be extremely valuable in informing my steps for Exercise 2 because I can assess the conditions of both patches and determine differences between the two. I can also determine if distance to the refugia impact the clustering of infection because it appears the infected cluster is closer to the fire refugia.

The hot spot analysis was extremely useful for analyzing and displaying the information I needed about the clustering and was very useful for building off of the Average Nearest Neighbor analysis.

My data set also included a severity rating for dwarf mistletoe infected western hemlocks in my study site. I ran a similar hot spot analysis to above to determine if there were any similarities with how severity played out in the stand compared to solely incidence data. My data ranged from 0 – 5, 0 indicating uninfected trees and 5 indicating most heavily infected. These are classified data, not continuous but still appropriate for the optimized hot spot analysis. Western hemlock dwarf mistletoe forms infection centers, starting from a residual infected western hemlock that survived some disturbance. From there the infection spreads outwards. Another facet of infection centers is that the most heavily infected trees are almost always aggregated in the center of the infection center and infection severity decreases as you move towards the outside of the infection center. This is intuitive when you think about infected trees in terms of the time they’ve been exposed to a dwarf mistletoe seed rain: the trees in the center of the infection center likely have been exposed to infectious seed the longest. These trees can be rated using a severity rating system that essentially determines the proportion of tree crown infected. This is calculated in a way that gives a rating that is easily interpretable, in this case, 0-5.

This third map tells me about how severity is aggregated in the stand. I can see that the wide swath in the middle of the stand, associated with the fire refugia, has the largest aggregation of severely infected trees. This is what I expected in the stand because the trees in the fire refugia survived the fire and provide an infectious seed source for the post-fire regeneration. Also, on the edges of this high severity cluster, are lower severity values indicating the expected pattern of infection centers are playing out. The west side of the stand shows a large clustering of low severity ratings. We can see that the high density of uninfected trees, falls into our cold spot of low or no severity. Interestingly, the hot spot of trees found previously  in the southwest corner, is actually a cluster of low severity trees. This may be a new infection center forming or an exterior edge of another infection center outside the plot.  Lastly, the two pockets of low severity on the east side of the stand are more distinct when considering their severity.

This second application of hot spot analysis tells another story about my data and how dwarf mistletoe is patterned spatially. The non-significant swath in the center of my stand using the incidence data turns out to be a significant clustering of highly infected trees among other new observations.

 

Deaggregation of infrastructure damages and functionality based on a joint earthquake/tsunami event: an application to Seaside, Oregon.

Research Question and Background

The Pacific Northwest is subject to a rupture of the Cascadia Subduction Zone (CSZ) which will consequently result in both an earthquake and tsunami. While all communities along the coast are vulnerable to the earthquake hazard (e.g. ground shaking), low lying communities are particularly vulnerable to both the earthquake as well as the subsequent tsunami. Completely mitigating all damage resulting from the joint earthquake/tsunami event is impossible, however, understanding the risks associated with each hazard individually can allow community planners and resource managers to isolate particularly vulnerable areas and infrastructure within the city.

The city of Seaside, Oregon is a low-lying community that is subject to both the earthquake and tsunami resulting from a rupture of the CSZ. The infrastructure at Seaside can be divided into four components: (1) buildings, (2) electric power system, (3) transportation system, and (4) water supply system. Similarly, the hazards can be viewed jointly (both earthquake and tsunami), as well as independently (just earthquake or tsunami).

Within this context, I’m particularly interested in looking at how the spatial pattern of infrastructure damage and functionality is related to individual earthquake and tsunami hazards via ground shaking and inundation respectively. Furthermore, I’m interested in looking at how these spatial patterns change as the intensity of the hazard increases.

Description of Dataset

The dataset I will be analyzing consists of two components: (1) spatial maps, and (2) infrastructure damage and functionality codes. Part of this analysis will be merging these two components to spatially view the infrastructure damage and functionality.

The spatial maps consist of:

  1. Building locations (represented as tax lots)
  2. Hazard maps: earthquake ground shaking and tsunami inundation hazard maps

The infrastructure damage and functionality codes implement Monte-Carlo methods to probabilistically define damages, losses, and connectivity. The four infrastructure codes consist of:

  1. Buildings: expected damage and economic losses to buildings.
  2. Electric power system: a connectivity analysis of each building to the electric substation. There is one electric substation within Seaside.
  3. Transportation system: a connectivity analysis of each building to critical infrastructure. Critical infrastructure at Seaside consists of two fire stations and one hospital.
  4. Water supply system: a connectivity analysis of each building to their respective pumping station. There are three water pumping stations within Seaside, and each building is assigned to a single pumping station.

Hypotheses

I hypothesize that the infrastructure damage is not spatially variable for the earthquake hazard, however it will be for the tsunami hazard (e.g. distance from coast). The relative damages due to tsunami will also increase as the intensity of the hazard increases.  That is, for small events, the damages will be dominated by earthquake, whereas for larger events, the damages will be dominated by the tsunami.

Approaches

While color-coordinating tax-lots based on economic losses provides a means to visualize damages throughout a study region, I am interested in learning about kernel density estimation and hot spot analysis to identify vulnerable regions (not just individual buildings). I am also interested in learning about different spatial network analysis methods, as only connectivity analyses within the infrastructure networks (electric, transportation, and water) have been considered so far.

Expected outcome

I’m hoping to produce maps showing how damages and economic losses relate to both joint hazards (earthquake and tsunami), as well as independent hazards (just earthquake or tsunami). I would also like to produce maps showing the connectivity of individual tax-lots to critical infrastructure. Furthermore, I would like to investigate visualizing both the economic losses and connectivity analysis through color-coordinating tax-lots, kernel density estimation and hot-spot analysis.

Significance

The ability to spatially isolate vulnerable areas will allow community planners and resource managers a means to better prepare mitigation plans. Deaggregating the damages and losses by infrastructure and hazard will isolate the relative importance of each, and can assist in mitigation measures. For example, identifying that the earthquake is the dominating force in producing building damages within a specific region, planners and resource managers can support retrofit options for homeowners within that region.

Level of preparation

  1. Arc-info: novice
  2. ModelBuilder and/or GIS programming in Python: Although I haven’t done GIS programming in Python, I am highly proficient in Python and am comfortable working with GIS data. Learning how to merge python and GIS should not be difficult.
  3. R: novice
  4. Image processing: novice
  5. Other relevant software: I’m proficient in QGIS.