Author Archives: pazdralr

Relationship of river recession behavior to watershed lithological composition

Research Question: How is watershed recession behavior related to the spatial pattern of watershed lithological composition in Oregon coastal freshwater systems?

Data

Recession Analysis

For the recession analysis performed in this exercise, I used daily records of precipitation from the PRISM database. Daily data is the highest temporal resolution that PRISM has to offer. The PRISM time series were downloaded from cells nearest the gage. Time series were from 2001 to April 2019. For further methodology on recession analysis, refer to Exercise 1. River discharge data was collected by the U.S. Geological Survey at the watershed pour point used here. Discharge data is recorded every 15 minutes, which was upscaled to daily average to match the resolution of the precipitation data. As a result, recession analysis results were on the daily timestep from April 2019 to 2001.

Geophysical data

Lithological data was sourced and derived from the Oregon Department of Geology and Mineral Industries state geological map. General lithology type is a listed variable in the attribute table (GEN_LITH_TY), and ArcGIS was used to dissolve that attribute across the study area. The spatial resolution of this dataset is unclear. Additionally, the data is representing “immutable” features, and therefore there is no associated temporal scale.

Hypotheses

Streams and rivers in watersheds with predominantly volcanic geology will recede faster than those with predominantly sedimentary geology.

Streams and rivers in watersheds with similar underlying lithology will have similar recession characteristics.

Approaches

To perform this analysis, I followed the following steps:

  1. Recession analysis on the daily timescale across eight watersheds. Statistical methods and other analytical procedures are outlined in Exercise 1.
  2. Profile lithological composition within each of 35 study watersheds across the Oregon Coast Range. Percentages of metamorphic, plutonic, sedimentary, surficial sediments, tectonic, and volcanic lithologies were quantified for each study watershed. Technical procedures are outlined in Exercise 3.
  3. Perform hierarchical clustering analysis on lithological composition profile to see which watersheds are most lithologically similar and dissimilar.
  4. Compare recession analysis coefficients to clustering results and lithologic profiles to see if recession behavior appears to be different in different predominant lithologies.

Results

Results from the clustering analysis demonstrated that a most coastal watersheds are predominantly underlain by sedimentary and volcanic lithologies, and that sedimentary lithologies dominate the region. However, volcanic lithologies are well-represented, primarily at the northernmost latitudes. Because of this stratification, recession analyses could be performed at watersheds in both lithologies and compared to test whether lithology is a dominant control. However, because I conducted the recession analysis before profiling lithological composition, only one of the eight hydrologically analyzed watersheds is in predominantly volcanic geology (Figure 1). The watersheds grouped under the sedimentary branch span values of 54-100% sedimentary lithology. Watersheds grouped under the volcanic branch span values of 47-74% volcanic geology.

Figure 1. Results from hierarchical clustering analysis depicted in a dendrogram. Watersheds in which recession analyses were performed are circled.

When recession coefficients from the recession analysis are compared with the clustering analysis results, we see that coefficient a is fairly consistent among all watersheds, while coefficient b is much larger in the predominantly volcanic watershed (Table 1). The Wilson River near Tillamook, Oregon, is characterized as 50% volcanic lithology, which is the highest among the studied watershed. Recession analysis coefficient b from the Wilson River is 1.726 is also the highest in the eight studied systems.

Table 1. Table showing lithological composition of watersheds for which recession analysis was performed. Coefficient results from the analysis are also listed.

Significance

While the results of this study are inconclusive given the small sample size, it does give indication that lithology is an important control on watershed recession behavior and should therefore be included in analysis of temporal patterns of hydrological behavior. It is relevant to resource managers in coastal PNW regions because it indicates a watershed characteristic that influences storage and release behavior. Such information may be valuable for identifying systems that are more or less susceptible to drought and changes in the climatic patterns.

Learning Outcomes

  • Watersheds can be delineated in Matlab, and it is much faster than ArcGIS.
  • dplyr is a very important and useful package for reformatting data in a logical way
  • I learned more about spatial autocorrelation from conversations with other students about their analyses, especially given the breadth of research topics in the classroom.
  • Probably the two most important outcomes of this project were the recession analysis and the clustering analysis. The recession analysis involved multi-variate regression, which when applied to my data and research question, makes far more sense. The clustering analysis helped get at the question I have had for some time: how similar/dissimilar are my study watersheds? For this project, I focused on lithology, but I think it will be a useful tool for analyzing the other variables as well. Additionally the clustering analysis will provide a useful method for stratifying my sampling design into different lithological groups.

Cluster analysis of watershed lithology in Oregon coastal systems

The question that I asked for Exercise 3 was: how similar are the lithological profiles of Oregon coastal watersheds?

I used cluster analysis to answer this question. Broadly, cluster analysis is a way of grouping data that minimizes within-group variance and maximizes between-group variance. There are many ways of performing a cluster analysis, usually involving statistical optimization computations. For this exercise, I used hierarchical clustering, which builds a hierarchical grouping network based on the distribution of numerical attributes in a dataset. My dataset was the lithological profile of 35 watersheds in the Oregon Coast Range. The lithological profile refers to the percentage of each lithology, including metamorphic, plutonic, sedimentary, surficial sediments, tectonic, and volcanic types.

Methods

  1. Computing lithological profile for each watershed
    1. Downloaded “Oregon Geologic Data Compilation – 2015” from Oregon Spatial Data Library. https://spatialdata.oregonexplorer.info/geoportal/details;id=e71e1897f5864b689a3a4a131287a309
    2. Used ArcMap to dissolve the geology layer based on the GEN_LITH_TY field, which classified each geological type into either: metamorphic, plutonic, sedimentary, surficial sediments, tectonic, or volcanic.
    3. Used ArcMap to intersect geology data with study watersheds. The Intersect tool subsets the dissolved lithology layer to only include data bounded by the study watersheds.
      1. Ran Intersect on multiple different shapefiles: wshd4, wshd5, and all Coos watersheds
      2. The output of the Intersect tool is a shapefile with each discrete lithological type as a single feature. As a result, there was often more than one polygon per lithology in each watershed.
    4. Used Calculate Geometry tool in ArcMap attribute table to calculate area (in square kilometers), and the latitude and longitude of each watershed polygon centroid.
    5. Exported attribute tables of each output shapefile and standardized columns in Excel. Exported as CSV and reformatted table in R so that rows demonstrated each watershed and their lithological profile. Used dplyr to group each lithological type and sum percentage. Used tidyr (spread function) to make each lithology a column.
  2. Cluster analysis
    1. Used the daisy function in R (package: cluster) to compute all pairwise dissimilarities between the 35 study watersheds. The dissimilarity distances were calculated using the Euclidean method.
    2. Performed hierarchical clustering analysis (HCA) on the dissimilarity matrix computed in Method 2a. I used the agnes function to compute the HCA using Ward’s method. The minimum variances between groups in Ward’s method are calculated by squaring the Euclidean distance.
    3. Validated hierarchical clustering procedure using eclust (package: factoextra) and fviz_silhouette. The latter function is just for visualizing the results from the former, the cluster validation.

Results

The HCA resulted in a fairly successful clustering with an agglomerative coefficient of .96. The agglomerative coefficient is a measure of the clustering structure, with values closest to one representing a high degree of dissimilarity between clusters. The cluster validation demonstrated that all but two watersheds were adequately grouped (Figure 1).

Figure 1.Results from cluster analysis silhouette plot.

Figure 2. Dendritic hierarchical clustering results. Three numbers are written below each final branch: the top is the watershed ID, the middle is the percent sedimentary lithology (blue), and the bottom is the volcanic geology (purple).

The HCA resulted in two main groups with many sub branches (Figure 2). By comparing the lithology percentages to the clusters, I determined that one main branch includes watersheds dominated by volcanic lithology and the other branch includes watersheds dominated by sedimentary lithology. Eight of the 35 watersheds are primarily volcanic, 26 are primarily sedimentary, and one watershed does not fit this classification (Watershed 31: 85% surficial sediments).

Critique of Method

This method was very useful for me because it helped me characterize the lithology of my study watersheds in a quantitative way, and then identify the dissimilarities between the lithological profiles of each watershed. The results from this exercise will advance my ability to compare hydrologic regime characteristics across coastal watersheds and the driving controls on such hydrological processes. For example, the dendrogram in Figure 2 shows that there are five watersheds with 100% sedimentary lithology and five watersheds with predominantly volcanic geology. Such statistics will help me stratify my study design and guide my flow regime analysis.

Watershed recession behavior as a function of watershed environmental variable

Question asked: How is the spatial pattern of watershed recession coefficients related to the spatial patterns of watershed elevation, soils, geology, basin area, and precipitation?

Name of the tool or approach used: To perform this analysis, I used recession analysis to quantify low flow metrics for 12 streams and rivers in the Oregon Coast Range. I classified the a and b recession coefficients using 2 different approaches in ArcGIS: equal interval and natural jenks. The resulting classifications are quite different.

Methods of procedure:

  1. Recession Analysis: the methods employed for the recession analysis are described in Exercise 1. For Exercise 2, I calculated recession coefficients for an additional seven sites in the Oregon Coast Range for a total of nine sites. Data for the present analysis was analyzed on the hourly timestep.
  2. Watershed Delineation: I delineated watersheds in ArcGIS based on each gaged pour point.
  3. Spatial data: I downloaded relevant spatial data from various geospatial databases including Oregon Geospatial Enterprise Office, USGS, USDA, and OSU PRISM Climate Group.
  4. Data Visualization and Classification: I used ArcGIS to visualize my spatial data and to classify the recession analysis results. I used two classification methods: equal interval and natural jenks. Both methods had 5 classes.
    1. Equal interval classification: classification categories using this method is calculated by dividing the range of data by the designated number of classes.
    2. Natural jenks classification: this is an optimization method of classification that minimizes variance within classes and maximizes variance between classes.
  5. The results of my classification were analyzed by visual comparison. That is comparison between the two classification methods, as well as how the results of each classification methods compared to the environmental variables across the watersheds.

Results:

Results from this analysis demonstrate that the recession coefficient classification method influences the apparent spatial variability of recession metrics. The natural jenks method results in more spatial heterogeneity across the latitudinal gradient (Figure 1). The a and b recession coefficients seem to be related in the way that they vary across space, however coefficient b is slightly more variable than coefficient a. The equal interval classification method results in a more homogenous representation of both a and b coefficients (Figure 2). Coefficient a seems to be largely controlled by basin size using this method, which is apparent because the smallest basin that is in the class with high values. Coefficient b is more variable, and also seems to be controlled by basin area. Precipitation may also be a primary control. Overall, between the two classification methods, the Nehalem watershed (furthest north) and the Chetco watershed (furthest south) seem to demonstrate similar recession coefficients. The watersheds between the Chetco and the Nehalem, in general, demonstrate similar recession behavior.

Figure 1. Classification of recession coefficients using the natural jenks method in ArcGIS, compared to five environmental variables. Coefficient a is in the first panel and coefficient b is in the second panel.

Figure 2. Classification of recession coefficients using the equal interval method in ArcGIS, compared to five environmental variables. Coefficient a is in the first panel and coefficient b is in the second panel.

Critique of method:

This was a simple method of visual comparison across space, however it was quite useful for both: 1) considering the spatial patterns of watershed recession behavior, and 2) comparing classification methods and how they influence the outcome of the analysis. Because it is just a visual comparison, there are no quantifiable differences presented here, which will be important moving forward. Additionally, this was an important exercise to understand the mechanical steps necessary for making this comparison.

Recession Analysis in Two Coastal Basins

Research Question

The question that I asked for this exercise was: What is the spatial variability of the recession timescale at different flow rates in rain-dominated, coastal basins?

Approach

Stream flow regimes are generally defined by five components: magnitude, frequency, duration, timing, and rate of change (Poff et al., 1997). For the purposes of this exercise, I am investigating the rate of change (or “flashiness”) component of flow regime in two river systems in the Oregon Coast Range: the Nehalem and Alsea River watersheds. I am analyzing recession behavior in these two systems to quantify a rate of change metric. I used the recession curve method, largely developed by Brutsaert and Nieber (1977), and later built upon by Krakauer et al. (2011) among many others. Recession curves describe the rate at which streamflow recedes in various streamflow conditions. In more general terms, recession curves provide an indication of watershed storage and groundwater behavior.

Methods

To complete the recession analysis in the Nehalem and Alsea watersheds, I followed the following steps:

  1. Downloaded streamflow data for the available period of record in 1-hour observation intervals using the dataRetrieval and EGRET (both developed by the USGS) packages in R.
  2. The data were in cubic-feet-per-second (cfs) units, which I converted to unit discharge (mm/hour) using respective basin areas.
  3. For recession analyses, only data points with insignificant precipitation are viable. Therefore, all time steps when precipitation was greater than 10% of total streamflow were removed. To do this, local precipitation data was necessary, however it is often hard to come by. As a result, the precipitation data sources for the Nehalem and the Alsea are different and the methods diverge slightly hereafter.
    1. Nehalem precipitation data was sourced from the USGS Vernonia site, which is upstream from the mainstem river gauging site where streamflow data for this analysis was sampled. For the purposed of this exercise, I assumed that rainfall (measured in inched at 30-minute intervals) was spatially consistent across the basin. For a more precise estimate of precipitation, multiple, spatially distributed rain gages would be needed.
    2. Alsea precipitation data in hourly timesteps was not readily available. There are a couple NOAA rain gages in the vicinity, but the data appeared to be spotty. As a result, I used daily precipitation data from PRISM to identify days in which total daily precipitation was greater than 10% of total daily streamflow. Next, I used the subset out the identified dates from the hourly streamflow data.
  4. Calculating rate of change: For this component of the analysis, I only wanted data from the receding hydrograph. I used the equation to estimate hourly -. Hourly streamflow (Q) for the corresponding hours was estimated as .
  5. (or  ) is the rate at which flow jumps values from one time-step to the next at a given flowrate. Because this is a recession analysis, I only wanted data that was on the receding slope and therefore subset the data to time-steps when  was negative.
  6. Lastly, I developed a simple linear regression model for vs Q for each watershed using the following equation:

 Results

Alsea

When log-transformed and plotted, the discharge and rate of change of discharge follow a linear relationship, however the relationship is different for data analyzed at different temporal resolutions (Figures 1 a-b). The recession results from the daily timestep are likely muted because recession processed occur on shorter timescales, on the order of minutes to hours.

Figures 1 a-b. On the left, recession curve results for the Alsea River on a daily time step, after removing days with high precipitation. On the right, recession curve results for the river on an hourly time step, after days with high precipitation were removed. Both a and b include only recession data.

 

Table 1. Table showing different coefficient values for different temporal resolutions of Alsea recession data.

Data a coefficient b coefficient
Alsea (daily) -3.029 1.639
Alsea (hourly) -5.2346 0.9138

Nehalem

Recession analysis on year-round, hourly Nehalem River data resulted in an a coefficient value of -4.696 and a b coefficient value of 1.049, which are similar values for the Alsea hourly results. However, the Nehalem recession data is showing two linear trends in the plotted data (Figure 2). The two trendlines remained after controlling for both diurnal flux and season (Figure 3).

Figure 2. Recession results from the Nehalem River data. The red line is the calculated linear regression model, however two lines may be more representative of the recession behavior, such as those estimated in blue.

Figure 3. Recession data separated into seasons and only including receding slopes, night time hours, insignificant precipitation. The two trendlines are apparently less distinguished in certain seasons of the year.

Critique of Method

            Recession analysis is a method that I will use in my research, and this was a helpful exercise in that it helped me understand the nuances of recession data analysis, including data acquisition and availability, and opportunities for improvement. Moving forward, this analysis would benefit from: more spatially accurate precipitation data, more investigation of the explanations for the observed patterns and trends, and more sophisticated statistical comparison between sites.

References:

PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 Feb 2004.

Krakauer, N. Y., & Temimi, M. (2011). Stream recession curves and storage variability in small watersheds. Hydrology and Earth System Sciences, 15(7), 2377–2389. https://doi.org/10.5194/hess-15-2377-2011

Sawaske, S. R., & Freyberg, D. L. (2014). An analysis of trends in baseflow recession and low-flows in rain-dominated coastal streams of the pacific coast. Journal of Hydrology, 519, 599–610. https://doi.org/10.1016/j.jhydrol.2014.07.046

Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637–643. https://doi.org/10.1029/WR013i003p00637

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769–784. https://doi.org/10.2307/1313099

My Spatial Problem: Streamflow variability and associated processes in rain-dominated, coastal basins

My research explores the variability in streamflow patterns in rain-dominated systems of the Pacific Northwest. Rain-dominated climate regimes occur primarily in the coastal portion of the PNW. Because precipitation only occurs as rain and does not occur in significant quantities during the summer season, underground storage is a crucial component of both the water cycle and streamflow stability in these systems. The objectives of my research are: first) to describe variations in stream hydrograph stability across multiple catchments and multiple catchment scales, and second) to use estimations of catchment storage processes to help explain potential variations in streamflow patterns.

I will be analyzing multiple datasets in order to meet my objectives. Those include: geophysical data, land-use/management data, and streamflow data. All landscape data will be analyzed at the finest spatial resolution available for the dataset. Hourly streamflow data will be analyzed for the available period of record, which varies by site. Second-fourth order streams in the Siletz and Smith river basins have hourly discharge data for the recent 5-8 years. USGS hydrological stations have similar data for 10-30 years.

I expect to see that streams in different hydrogeologic setting demonstrate different streamflow patterns over time. Streams located in more permeable, thicker lithosphere, may demonstrate more stable stream flows. In the winter, that may appear as muted storm peaks, while in the summer, that may appear as more sustained baseflows through the non-rainy season. Land cover may play an important role in streamflow regimes as well. The amount of water taken up and stored by vegetation may depend on the density, age, structure, and species composition of the forest. Watersheds with a large areas managed under industrial timber production may confound streamflow behavior.

I envision approaching my objectives by first developing some descriptive statistics for the hydrographs at each site. Such descriptors may include: recession analysis, dynamic storage, 7q10, arc peak, and various other streamflow analysis metrics with which I am not yet familiar. All sites are of varying contributing areas, so that will have to be taken into consideration in the analysis. Once descriptive statistics are developed across each site, I would like to integrate an analysis of the landscape attributes as potential explanatory variables for any variations observed in hydrograph statistics across space to see how much explanatory power they have, and how much variation there is.

The product of this project is expected to include both maps and statistical relationships. For maps, I would like to produce: 1) a depiction of the hydrogeologic settings across the study area, and 2) a depiction of expected streamflow patterns given the hydrogeologic settings. I would like to understand the statistical relationship between various streamflow metrics and the hydrogeologic setting of the given stream.

The results of this analysis may be important to resource managers and the scientific community as it will contribute information about hydrological processes, with a focus on the critical zone, in the PNW coastal landscapes. The persistence of streams and rivers in this region is crucial to several species of native salmonids, as well as to the economic well-being of the local communities. With potential variations in the climate, understanding underlying hydrological processes and the drivers of such processes may contribute to more proactive management approaches. Furthermore, an analysis that is relevant to the fine-scale processes that exist in the study area may contribute more accurate classifications of hydrologic regimes and analyses of streamflow vulnerability to long-term changes in the hydrological cycle.

As far as preparation for this project: I am well-versed in ArcGIS software. I have used Model Builder and Python some, though could use more practice. I am most comfortable with spatial and statistical analyses through R software. I have only used imagery analyses in a class, and I’d like to use it for my analysis so I am looking forward to learning more through this class.