Question Asked
I’ve been using my time in this class to explore methods and analyses that could help me to better understand the spatial and temporal relationships between satellite-derived seascapes and fishes in the California Current Ecosystem. In Exercise 1, different types of interpolations were explored and applied to the trawl data to see how results changed. After refining methods related to the Kriging Interpolation, Exercise 2 was conducted, exploring he possible uses of neighborhood analysis in determining the prominent seascapes related to high rockfish abundance in the California Coast Ecosystem. Exercise 3 builds on the results of the previous two exercises: in order to explore the relationship between seascapes and rockfish abundance, a confusion matrix was calculated to measure the ability for certain seascapes to predict the occurance of rockfish hotspots. Simply put, the question being asked is: How were seascapes related to areas of high rockfish abundance in the California Coast Ecosystem in May of 2007?
Tool Used
In order to answer this question, I’m going to use a confusion matrix. A confusion matrix is a table that measures the agreement between two raster layers and provides an overall measure of a model’s predictive capacity. Additionally, these matrices can also measure a raster’s error (in terms of false-positives or false negatives). Each statistic calculated is useful, as each one clues the researcher into spatial or methodological processes that may account for certain types of error. The confusion matrix works by taking original data and creating accuracy assessment points, which are points assigned to random spatial points and given the value indicated by the raster value at that point. Those points are then matched up to points on the model raster and statistics are calculated measuring how much they agree.
Methods
The data used for this exercise are the following:
- Significant seascape classes that indicate high rockfish abundance for May 2007, as determined by the neighborhood analysis in Exercise 2
- Seascape raster data for the relevant month
- Rockfish abundance raster (interpolated, from Exercise 1)
Confusion matrices can only be calculated when your ground-truthed and modeled layers are the same units. For this reason, my raster data had to be converted to presence absence data for both the seascape classes and the interpolated rockfish abundances. In order to do this, I used the Reclassify tool in ArcGIS to change “present” values to 1 and “absent” values to 0. For the interpolated abundance raster, any nonzero and nonegative values were changed to 1 to indicated modeled rockfish presence. The remaining cells were changed to 0 to indicate modeled rockfish absence. The result was the raster shown below:
Similar steps were used to reclassify the seascape data – seascape classes 7, 12, 14, 17, and 27, which were shown to be present within a 25km radius of the high abundance trawls in Exercise 2, were counted as present cells, while the other classes were counted as absent cells. The result was the raster shown below:
It was determined that the seascpae layer would be the base or “ground-truthed” layer and the interpolation layer would be the modeled layer, since the interpolated values are simply estimations. The next step was using the “Create Accuracy Assessment Points” Tool to create randomized points within the modeled layer. The result was the following shapefile:
Once the points are created, they must be compared to the values in the modeled layer. The Update Accuracy Assessment Points tool does this automatically, and my points were matched up to corresponding values from the seascape layer. Finally, the final step was to run the resulting shapefile through the “Calculate Confusion Matrix” tool.
Results/Discussion
The resulting confusion matrix is displayed below:
ClassValue | C_0 | C_1 | Total | U_Accuracy | Kappa |
C_0 | 9 | 79 | 88 | 0.102272727 | |
C_1 | 89 | 276 | 365 | 0.756164384 | |
Total | 98 | 355 | 453 | ||
P_Accuracy | 0.091836735 | 0.777464789 | 0.629139073 | ||
Kappa | -0.135711 |
The two rasters measured in the matrix did not compare well at all, resulting in a negative Kappa value. Kappa values measure overall agreement between two measures, with 1 being perfect agreement. A negative score indicate lower agreement than would be found by chance. The interpolated model performed especially poorly measuring absent values, only agreeing with the seascape model on 9 pixels. While the two rasters agreed on a vast majority of the areas where rockfish may have been found, the irregularities on the absence areas drove the matrix to failure. The large number of both false positive and false negative readings shows that this was not a fundamental disagreement based on scale or resolution of the models – the two methods of measuring rockfish abundance fundamentally disagreed on where they should be found, to the point where they cannot be reconciled.
Critique of Method
Overall, I think a confusion matrix is a good way to compare modeled and true (or ground-truthed) measured information. However, in my case, both of my informational rasters are the results of modeled analyses, each with their own set of assumptions and flaws. The interpolation, for example, is at the mercy of the settings used when executing the Kriging: how many points shall be measured per pixel? Is it a fixed sampling method, or variable, spatially based? And the seascape raster is at the mercy of the neighborhood analysis, which was only conducted on 4, hand-picked points, which introduce all kinds of sampling and spatial biases. All of this, coupled with the fact that both rasters had to be distilled into presence-absence data, which eliminates much of the resolution that makes Kriging so great, results in a heavily flawed methodology that I do not believe truly represents the data. This framework which I’ve used, however, has the potential to be modified, standardized, and rerun in order to address many of these issues. But for now, I feel as though the confusion matrix is a helpful tool, just not for two sets of modeled data.
Willem, this is a nice approach, and deserves further exploration. For example, I would suggest looking for the seascape classes that were associated with more than just 2 points. And I would recommend doing the confusion matrix analysis with one seascape class at a time. it would be useful, as well, to map the errors (false positives and false negatives) and determine how far away they are from locations where you have data (these are locations about which there is the greatest uncertainty). So, I encourage you to pursue this. In your final report, please state some hypotheses about what seascape conditions you would expect to be associated with rockfish young of the year, and why, and then relate your findings to these hypotheses.