Description of the Research Question
My study site is located in the HJ Andrews Experimental Forest, where the two most recent mixed severity fires burned leaving a sizable fire refugia in the middle of the stand. Western hemlock dwarf mistletoe (WHDM) survived the fire in this refugia. WHDM spreads via explosively discharged seed and rarely by animals. This means that for the pathogen to spread, the seed must reach susceptible hosts. WHDM is a obligatory parasite of western hemlock. The regeneration post fire may pose a barrier to the pathogens spread because of the structure and composition. Lastly, the structure of the fire refugia may determine the rate of spread. This is because the structure largely determines where infections exist in the vertical profile of the canopy.
My research question is: How is the spatial pattern of WHDM spread extent and intensification from fire refugia related to the spatial pattern of the structure and composition of the fire refugia and the surrounding regeneration via barriers to viable seed reaching susceptible hosts?
I have three objectives related to the spatial organization or the regenerating forest surrounding the fire refugia and one related to the fire refugia itself. My objectives are to determine how fire refugia affects dwarf mistletoe’s spread and intensification through:
- The stand density of regenerating trees and of surviving trees, post fire.
- The stand age and structure of regenerating trees and surviving trees in fire refugia.
- The tree species composition of the regenerating trees adjacent to fire refugia.
AND…
- Whether intensification dynamics of WHDM inside a fire refugia resemble those of WHDM in other infection centers.
Dataset Description
Spatial locations of the extent of spread and intensity (also referred to as severity) of WHDM infection include presence/absence of infection in susceptible hosts and will have a severity rating for each infected tree. The presence/absence data will be two measurements, one from 1992 and one from 2019. The intensity rating will be from 2019 only.
Spatial locations/descriptions of the structure and composition of the fire refugia and regeneration surrounding refugia include X,Y of each tree, a variety of forest inventory attributes such as diameters, heights, and species for each tree, and delineation of the fire refugia boundaries. This data has been measured several times: 1992, 1997, 2013, and 2019. The GPS coordinates were recorded with handheld GPs units most likely under canopy cover so resolution may vary.
These data sets are bounded by a 2.2 ha rectangle that confines the study area.
Hypotheses
The spatial pattern of western hemlock dwarf mistletoe in the study site will be several discrete clusters. This arrangement forms because WHDM spreads from an initial infection point outward. The initial infection serves as an approximate center point and the cluster, or infection center, grows outward from there. Separations between clusters are maintained by forest structure and composition or disturbances. New clusters form from remnant trees surviving disturbances, or random dispersal of seed long distances by animals. In this case, the fire refugia protect the remnant trees from disturbance and these trees are the new focal points for infection centers
The spatial pattern of the forest structure and composition will drive the direction and rate of spread of WHDM because variances in these two attributes will cause varying amounts of barriers to WHDM seed dispersal. Because seeds are shot from an infected tree, that seed needs to reach a new uninfected branch. This means physical barriers to spread can affect seed dispersal and non susceptible species will stop spread.
Approaches
I would like to utilize spatial analyses that allow me to understand how the clustering of WHDM is related to the boundaries of the fire refugia. Also, how the infection centers have changed over time utilizing forest structure and composition metrics of the regeneration surrounding the refugia. Lastly, something that can incorporate a severity rating on a scale instead of simply presence/absence data and describe the distribution of severely infected trees vs lightly infected trees and how that relates to the fire refugia boundary and forest metrics of the regeneration surrounding the refugia.
Expected Outcome
I would like to produce statistical relationships that can determine the significance of forest density, species composition, age, and structure on the ability of WHDM to spread. Also, I would like to produce statistical relationships that can describe whether or not a fire refugia alters the way WHDM spreads and intensifies when compared to commonly observed models. Maps as visuals for describing the change over time would be a useful end product as well.
Significance
Understanding the spread patterns of WHDM is important for resource managers seeking to increase biodiversity and produce forest products. Focus has shifted to creating silvivultural prescriptions that emulate natural disturbances that are still economically viable and that maintain ecosystem functions. Disturbance events can control WHDM but also create opportunities to increase its spread and intensification so managers need to have an understanding of how a particular forest structure will affect WHDM. Also, if we want to maintain biodiversity, understanding how WHDM infection centers created by fire develop is important. Fire frequency and severity may be increasing in the future and the loss of mixed severity fire would mean a significant loss of WHDM. Land managers seeking to emulate burns can use this information to plan burns that preserve patches of WHDM if desired and understand how the pathogen will progress 25 years later. This is not usually the case for forest pathogens.
Level of Preparation
I have worked in ArcMap quite a bit, but I haven’t much experience with the wide range of functionality of ArcInfo. I used ModelBuilder somewhat to keep my queries and basic analyses organized. No experience programming in Python. I have taken two stats classes before this using R and feel I have a working knowledge and have no problem learning new tools in it. However, I have very little work with image processing such as working with rasters and some small exposure to LiDAR processing.
Stephen, excellent beginning. Think about 1) what is mechanism for research question? Try rephrasing as “how does the spatial pattern of fire refugia (A) affect spatial patterns of dwarf mistletoe spread (B) through physical barriers and susceptibility of post-fire and regenerating stands (mechanism C)?” 3) Hypotheses. Try “WHDM is expected to be clustered in all time periods, and new clusters are expected to form over time based on a dispersal kernel (null model) influenced by barriers and stand susceptibility.” 4) analyses. Try assessing the spatial patterns of DM and fire for Ex 1, then try assessing their relationships in Ex 2.