Ziad EldebriGraduate student Ziad Eldebri was the winner of the Lattice Hackathon Contest hosted by Lattice Semiconductor. He was awarded the grand prize of $5,000 and a trip to the Consumer Electronics Show 2017 in Las Vegas, Nevada. Eldebri competed against other students across the country to create an original idea on how to improve a battery powered device using Lattice FPGA. Eldebri’s winning idea was to develop a LIPO battery charger that could be used in any product that uses Lattice FPGAs.

“It was awesome, because I got to attend the Consumer Electronics Show and see state of the art electronics that ranged from 3D printed cars to drones that will talk to you,” Eldebri said. “I also got to learn more about Lattice Products and FPGAs.”

The goal of the competition was to create new ideas on how we can use FPGAs to improve our lives and the electronic devices that we use every day.

Story by Taylor Mrzena

Photo at the 30th Annual Small Satellite Conference in Utah.
Helena Bales poses with her lab group at in front of the NASA booth at the 30th Annual Small Satellite Conference. From left to right, Hollis Neel, Graham Grable, Megan Le Corre, Roger Hunter, David Cotten, Khoa Ngo, Paige Copenhaver, Nirav Ilango, Helena Bales, Caleb Adams. Paige and Caleb hold an engineering model of a cubesat launched by NASA.

Guest post by Helena Bales

I had an amazing experience this summer at the University of Georgia working in the Small Satellite Research Lab. The lab was founded by undergraduate students, myself included, partnering with professors, NASA, and the U.S. Air Force. Space seems impossibly far away and hard to get to, but with the increased popularity and strength of the small satellite community, it is now easier than ever to reach, even for self-funded, undergraduate engineering students.

We started as a small group of students and created a crowdfunding campaign with the goal of launching a small satellite into orbit. Most of the students on the project were at the University of Georgia (UGA). We had reached out to faculty members in the UGA geography department to see if they wanted a science payload to fly on our CubeSat. CubeSats are small satellites of a specific size. For example, a “1U” CubeSat is 10 cm wide, 10 cm deep, and 11 cm tall. The standard size has aided the commercialization of space.

SPOC mission patch
The mission patch for the Small Satellite that will perform multi-spectral analyses of the Georgia coast.

Currently, we have two CubeSat projects and about 20 members. The CubeSats launch off the International Space Station. One will look at Earth in order to track sediment plumes, algal blooms, and chemical runoff around Georgia. The other will create 3D maps of large geographic features such as mountains. We couldn’t have dreamed that this project would end up where it is now — a lab run by undergraduate students with two fully funded satellite projects.

My role in the lab is to develop the algorithms that we need to accomplish our mission objectives. That mostly involves adapting existing algorithms for use on orbit. Running software on orbit has different limitations than on the ground, so the software needs to be adjusted accordingly. For example, when dealing with space, engineers must take account of power shortages, overheating, and time limitations that might compromise transmission of data. Fortunately, we know these constraints ahead of time. With careful planning and testing, we can insure that our code will run on orbit.

The process of developing cube satellites posed both unique opportunities and struggles. As undergrads, trying to figure out how to build two satellites, we are all learning together. And the experience of working at the Small Satellite Research Lab is incomparable to most undergraduate experiences, because of the nature of the project and the close relationships developed through solving problems in space. Balancing the demands of the project takes a close-knit group of scientists and engineers and communication between group members. Through the experience we have built a productive lab and became close friends.

MOCI patch
The mission patch for the Small Satellite that will create 3D point clouds of large geographic features.

Eight of our members (myself included) received scholarships to attend the Small Satellite Conference in Logan, Utah. At that conference we had the opportunity to attend six days of talks about every aspect of small satellite missions. We all learned more than we could have imagined. We were also able to network with industry professionals from organizations like NASA and SpaceX. That week opened our eyes to issues that we hadn’t thought about yet, and introduced us to new satellite hardware vendors. When we returned from the conference, we were equipped to onboard new lab members, finalize our payloads, design our ground station, and plan outreach events.

Despite ongoing encouragement and success, we continue to struggle with getting the funding that we need to make a lab that can support multiple space missions. For example, using space-grade hardware requires a cleanroom in order to assemble our satellite to meet the standards set by NASA and the U.S. Air Force, who have each funded our missions. The funding we’ve received for the projects assumes that there is already a lab that is outfitted with all the supplies necessary to build and test a CubeSat, so we face the additional hurdle of establishing our lab.

I’m proud to be part of a group that welcomes challenges instead taking the easy route — an important characteristic for the next generation of scientists and engineers solving problem in the limitless reaches of space. With creativity and persistence, the University of Georgia Small Satellite Research Lab is pushing itself and reaching new heights.

—————

Author biography:

Helena Bales grew up in Portland and is a senior in computer science. In addition to her ongoing work at the UGA Small Satellite Research Lab, she works on campus as a software developer at the Valley Library. She spent last summer at NASA’s Johnson Space Center developing applications for the daily operation of the International Space Station. Her internships have fueled her interest in space and she plans to pursue a career in the aerospace industry after graduation.

Lizbeth Marquez and Nick Malos
Lizbeth Marquez and Nick Malos, advisors for the School of Electrical Engineering and Computer Science pose with Benny the Beaver.

In their role as advisors, Lizbeth Marquez and Nick Malos help hundreds of students in the School of Electrical Engineering and Computer Science navigate their way through college. Their goal is to help students succeed and ultimately earn their Oregon State degrees. According to a recent report from the Commission on the Future of Undergraduate Education, only 60 percent of college freshmen get a bachelor’s degree within six years. While there are many reasons students don’t complete their degrees, Lizbeth and Nick have some advice to offer to help you succeed.

Lizbeth’s Advice

  1. Get Organized
    College can be different from high school in that high school teachers tend to lead you through all the homework and due dates. In college, the professors post the assignments — often for the entire semester — and expect you to be prepared. Get a planner, use a smart phone app, or get a wall calendar — whatever it takes for you to know when assignments are due.
  2. Find the right place to study
    It may be your dorm room or a cozy corner of the library, but find a place that works best for you to get your work done — while avoiding as many distractions as possible. There are many places to go such as the MU, the Valley Library, your residence hall, or most buildings on campus!
  3. Seek a balance
    College life can be chaotic with various academic and social events. Make sure you stay balanced and don’t overload yourself. One way you can do this is by visiting OSU’s Mind Spa.
  4. Get involved
    You may feel overwhelmed with being homesick or feeling like you don’t belong. We encourage you to consider joining a student group (and be careful not to go overboard), whether it’s academic, religious, athletic, cultural, or social. You’ll make new friends, learn new skills, and feel more connected to OSU.
  5. Take advantage of the academic resources
    Most schools and colleges offer study tables or have tutors available. If you’re having difficulty, these resources are another tool available to you. Another idea: Talk to your classmates about getting a group together to study.

 

Nick’s Advice

  1. Explore your major and career options
    It is important to remember there is no one “right” or “best” major. You should select a major that aligns with your skills, interests, and goals. Talking with a career counselor in the Career Development Center can help you explore the options. Don’t be afraid to change your major. It is estimated that about 80% of undergraduate students across the United States change their major at least once (National Center for Education Statistics, n.d.).
  2. Get to know your fellow students
    It can feel intimidating at first, but it is important to get to know your fellow students because they can be a great resource. What better way to find others who share your same interests?
  3. Get to know your professors
    Talk to your professors and attend their office hours. I promise they are not as scary as you might think. Professors are here to help you learn the material, challenge you to think outside the box, and further your understanding of the subject. They are also a great resource when you need letters of recommendation for scholarships, internships, or graduate school. Just remember, the better they know you, the easier it is for them to write a quality letter.
  4. Put in the time & effort
    Some of the easiest ways to succeed include:

  5. Meet with your advisor
    It is important to speak with your advisor early and often. They are the ones who will provide you with your registration pin number. But more than that, they can assist with course selection and planning; registration; understanding major and degree requirements; and navigating the processes to find extracurricular opportunities, internships, jobs, and more.

Jen-Hsun Huang photoJen-Hsun Huang, co-founder, president and chief executive officer of NVIDIA, is honored this week by the Oregon State University Alumni Association at the 35th Annual Spring Awards. Huang is receiving the E.B. Lemon Distinguished Alumni Award for his significant contributions and accomplishments within the society and the university.

Since graduating in 1984, Huang has kept close ties with Oregon State as he has progressed through his career. He came to Oregon State when he was 16 to start his degree in electrical engineering. One of the best things that came out of his experience here, he said, was meeting his wife, Lori Mills. The two were assigned to be lab partners in an electrical engineering fundamentals class, and they married five years later. Together they are benefactors of the Kelley Engineering Center, contributing $2.5 million.

Huang, who was also a nationally ranked junior table tennis champion in high school in Beaverton, spoke to Oregon State students about how to succeed on a visit to campus in 2013.

“The most important thing is to do important work — to do relevant work. Then you have to do it with the best of your might,” he said.  “If you do that…you’ll be surrounded by the world’s best at what they do, and then almost anything is possible.”

The success of NVIDIA was built on innovations for graphics processing units for computer gaming. The reach of NVIDIA is beyond video games, however, now entering the realm of artificial-intelligence projects such as self-driving cars. This month NVIDIA announced a new chip that is specifically designed for a technique called deep learning.

The Spring Awards Celebration will be held Friday, April 22, 2016 in the CH2M HILL Alumni Center, on the OSU campus in Corvallis. Registration is requested by April 20.

Carl Beery photo
Carl Beery shows the project that earned him four achievements in the Mastery Challenge.

Carl Beery, a junior in electrical and computer engineering, took first place and a cash prize of $150 in the Mastery Challenge for winter term.

The Mastery Challenge is a new extracurricular program hosted by the School of Electrical Engineering and Computer Science at Oregon State University to provide more hands-on learning opportunities for all students, regardless of major. The program is based on a concept called gamification which uses elements of game playing, such as leader boards and badges, to motivate participants to gain new abilities such as 3D modeling and Python programming.

Beery had already been working on projects on his own, but he realized the Mastery Challenge would give him a better framework for learning new abilities and more motivation for completing tasks.

“The Mastery Challenge is a good starting point to learn about topics you wouldn’t have thought about trying on your own,” Beery says. “Without it, I wouldn’t have learned how to laser cut, and laser cutting is pretty cool.”

To participate, students login to the Mastery Challenge website with their university account to see the list of challenges for which they can earn achievements. In winter term two cash prizes were awarded — one for the highest number of achievements, and a second was awarded randomly to anyone earning at least one achievement.

Beery had completed eight achievements and was tied for first place when he realized a project he had been working on for class — an audio amplifier — would qualify him for four more achievements. He simply videotaped his class presentation and uploaded it to the Mastery Challenge website as proof of completion.

“The experience Carl had was what I was hoping for — a fun way to gain new skills that will benefit him in the future as he enters the job market,” says Don Heer, creator of the Mastery Challenge program and instructor of electrical and computer engineering in the College of Engineering.

The School of Electrical Engineering and Computer Science at Oregon State University is initiating a new extracurricular program to provide more hands-on learning opportunities for students. The Mastery Challenge program is based on a concept called gamification which uses elements of game playing, such as leader boards and badges, to motivate participants to gain new abilities such as 3D modeling and Python programming.

“The program is designed to help students apply the knowledge they learn in classes to practical skills that they will need for jobs when they graduate,” said Don Heer, instructor of electrical and computer engineering. Experiential learning is a focus for Heer who has also created the TekBots program, which integrates course content with building a robot; and the CreateIT Collaboratory, an internship program for students to work with outside clients to create prototypes.

To participate, students login to the Mastery Challenge website with their university account to see the list of challenges for which they can earn achievements. Participants can work on their own, or get help by contacting students who already have that achievement. Prizes will be awarded to students with the highest number of achievements each term. Helping other participants is another way for students to earn achievements.

Peers also participate in the evaluation process. To earn an achievement, a participant must demonstrate their ability by uploading a video or document to the website for review. Students who already have that achievement can recommend to Heer if the application should be accepted or denied. Heer then makes the final decision.

The Mastery Challenge program is open to anyone at Oregon State — students from other majors, faculty and staff can participate. Initially the program will include abilities in electrical engineering and computer science, but Heer’s vision is that the program will expand across the university, so students can earn achievements in a wide variety of disciplines.

Questions about the program can be directed to Don Heer.

Terri FiezTerri Fiez, professor of electrical and computer engineering at Oregon State University, was selected as the 2016 winner of the IEEE Undergraduate Teaching Award “for innovative undergraduate engineering and computing curriculum development fostering student engagement and retention.” IEEE is the world’s largest professional technical association, and honors one individual each year for inspirational undergraduate teaching.

Innovative teaching has long been a focus for Fiez who created the TekBots Platform for Learning and spearheaded the nation’s first online post-baccalaureate program in computer science. She received the 2006 IEEE Educational Activities Board Innovative Education Award, the 2006 OSU Student Learning and Success Teamwork Award, the 2014 OSU Vice Provost Award for Excellence: Innovation in Online Credit-based Teaching, and she was recognized by the students of the School of EECS at OSU as the OSU EECS Professor of the Year in 2014.

Fiez and collaborators designed the TekBots Platform for Learning to bring experiential learning into the electrical and computer engineering curriculum. Students apply their classroom knowledge to create their own robot, and as they progress through the program they add more functions to their TekBot. The program has been widely adopted at other national and international educational institutions, resulting in more than 10,000 student experiences with TekBots to date.

To serve the growing needs in industry for trained computer scientists, Fiez led the development of a bachelor’s degree program for post-baccalaureate students that could be delivered online.  In June 2012, the program was launched by Oregon State’s Ecampus program. Today the program boasts over 1,000 students from all over the country and the world with backgrounds as diverse as journalism, anthropology, chemistry, music, and law. It has been cited as one of the top online computer science programs in the country by multiple sources including Best College Reviews.

Karti Mayaram, professor of electrical and computer engineering, said, “Professor Terri Fiez has been a pioneer with a unique vision for engineering education that prepares ECE and CS undergraduate students for leadership positions in academia and industry.”

After 16 years at Oregon State, Fiez will assume the role of vice chancellor for research at University of Colorado Boulder in September of 2015.

2015 Oregon State AIAA team
The 2015 Oregon State AIAA team at the Intercollegiate Rocketry Engineering Competition held in Green River, Utah.

For the second year in a row, the Oregon State University’s branch of AIAA (American Institute of Aeronautics and Astronautics) took first place in the payload competition at the Intercollegiate Rocketry Engineering Competition held in Green River, Utah. The team also placed third in the overall competition in the advanced category that targets an altitude of 25,000 feet — their launch reached 17,611 feet and a maximum speed of Mach 1.4.

The competition, hosted by the Experimental Sounding Rocketry Association (ESRA), had 41 rockets launched this year by 36 different colleges representing seven countries (Australia, Brazil, Canada, Egypt, India, Turkey and the U.S.).

Oregon State’s team stood out in the competition for building nearly all of the components themselves. In fact, computer science student, Soo-Hyun Yoo said he had a hard time getting the judges to notice the extra work the team put in.

“All of the other teams at the competition had an aerospace program and bought off-the-shelf components. There were a very limited number of teams who built their own software and electronics and so very few people were asking about those things. I had to try really hard to make sure they realized the significance of having our own system that we can build on and modify to fit various needs,” he said.

Yoo said that a few of the payload judges were very excited about their original components and it was what likely earned them the payload award again this year. The award is prestigious because it includes all the teams in the competition from both the basic and advanced categories, and comes with a $700 prize. Since the award has been offered just two times, Oregon State is the only team to win it.

Oregon State AIAA Club rocket.
Going, going, gone. Oregon State took first place in the payload competition and placed third in the overall competition for the advanced category at the Intercollegiate Rocketry Engineering Competition.

The payload is the main purpose of sounding rockets, which are designed to conduct scientific experiments. The Oregon State team built a deployable payload in the nose cone of the rocket that deploys at the highest altitude and uses propellers to accelerate downward to counteract aerodynamic drag force and achieve microgravity in order to conduct experiments in a zero gravity environment.

Oregon State team arms the rocket.
The OSU team toggles the external power buttons to physically arm the electronics in the rocket. The ‘live’ circuits are connected to black powder ignition charges, hence the protective face masks.
OSU ground station engineers.
The ground station engineers attempt to make a radio connection with the transmitters in the rocket from 750 feet away. The receivers needed to be elevated in order to make the connection.

This year’s team built significantly on the success of last year’s rocket which won the basic category (targeting 10,000 feet) in 2014 at their first competition. Four sub-teams contributed to this year’s rocket: a payload team, a structures team, a propulsion team, and an aerodynamics and recovery team. At Oregon State’s 2015 Engineering Expo the payload team won the industry award for electrical and computer engineering and earned honorable mention recognition for the Boeing Engineering Excellence Award.

Elliott Fudim, an electrical and computer engineering student who joined the club as a senior, hopes that other students will discover the club sooner than he did and have more years to advance the rocket.

“It’s a once-in-a-lifetime opportunity. It’s one of the coolest things I’ve ever been a part of. And it’s important to keep on setting the bar higher,” Fudim said.

Yoo agreed, “I don’t think many students at OSU can say they made something that broke the speed of sound. It’s pretty cool stuff.”

Both Fudim and Yoo said that aside from the cool factor of being able to build a rocket, the experience of working on a cross-disciplinary team was more realistic to what they will experience working in industry. Additionally, working on a rocket that deals with extreme conditions such as speed and temperature offered interesting challenges.

“The limited test cycle in which we only get a few chances to launch and the cost of failure is high, was a learning experience. Getting it right the first time was stressful but also exhilarating,” Yoo said.

The team performed on-ground tests of the various systems and also practiced their launch setup to make sure everything went smoothly on competition day (view photos). Their only full-flight test was performed in Brothers, Oregon near Bend where they could secure a waiver from the FAA for air space.

For future competitions, the club has begun developing an experimental hybrid rocket motor. The current rocket is a solid propellant rocket with a simple ignition – “you light it and it just goes,” explained Yoo. The hybrid rocket will have a throttle to adjust the thrust depending on need.

This year’s team was able to compete with the support of their sponsors: Advanced Circuits, CadSoft EAGLE, and the College of Engineering at Oregon State. “We couldn’t have done this without them,” Fudim said.

-Story by Rachel Robertson

View more photos at the AIAA Flickr album

The Technology Association of Oregon (TAO) sponsored an Education Roadshow at Oregon State on May 28 to help students tailor their education to match industry needs. Representatives from AKQA, Columbia Sportswear, Hewlett-Packard, Tripwire and Vadio answered questions about what to expect when entering the workforce and how best to prepare. The event drew 250 students which was beyond the expectations of Danny Dig, assistant professor of computer science, who facilitated and moderated the event.

Maria Powell, who attended the event, said, “Being able to get first hand advice from professionals in the industry is invaluable to me. It not only gives me ideas of what I would like my goals to be beyond college but it helps me to be pro-active about my future right now.” Powell is a senior in computer science who will be graduating this August.

Nicholas Nelson, came to the event with more experience than most students since he worked in industry before returning to school in 2012 to finish his degree. “Our industry operates at such a fast pace, things that seemed common place three years ago when I was still working are likely to have changed. I wanted to be aware of the latest and greatest, and this industry panel did not disappoint. The diversity of panelists provided an excellent glimpse into both the start-up world and the established giants of industry,” Nelson said.

To make the time with the panelists the most effective, Dig polled students ahead of time to find out what questions they most wanted answered. The top two questions were: What questions should a prospective candidate ask during an interview? What kind of coursework and/or research projects are valued by industry? All the questions and answers are available on the EECS website.

“The students loved the event and many commented that these kinds of events make them feel lucky to be at Oregon State. Several of them have continuing discussions with the panelists about jobs and interviewing,” Dig said.

The event fits with the mission of the TAO to grow the technology economy in the region by providing programs and initiatives that support industry promotion, advocacy, professional networks, and talent development.

Dig acknowledged the help of the panelists: Bryce Clemmer (Vadio), Andy Neville (Columbia Sportswear), Andy Doan (AKQA), David Whitlock (Tripwire), Shelly Reasoner (HP) who volunteered their time to answer questions; Tina Batten who helped organize the event; Kevin McGrath, instructor for Operating Systems who gave up a class period for the event; all the students who helped generate questions and took notes during the event; TAO, which started the Education Roadshow; and Chris Scaffidi, associate professor of computer science, who had the vision of bringing the Education Roadshow to Oregon State.

Tanner Cecchetti, Eta Kappa Nu 2015 Sophomore of the Year.
Tanner Cecchetti, Eta Kappa Nu 2015 Sophomore of the Year.

Tanner Cecchetti has always been a tinkerer, even as a child. His first experiments used simple technology such as tissue and corks to create tiny parachutes. Now, an electrical and computer engineering student at Oregon State, his focus is on mobile technology, and especially jailbroken iPhones.

His interest was encouraged by his mother who initially started her degree in computer science before switching to accounting. She bought him video editing software in fifth grade when Cecchetti was part of a video editing team at school, and she made sure he had a cell phone when he was 10 years old because she wanted him to start playing with that technology. The many hours he spent tinkering with technology lead to success when in high school he earned second place for three years in a row at a state-wide team-based programming competition.

“The coolest thing I’ve ever done with programming was to write a program that got a couple million downloads, which was super exciting,” Ceccetti said. The program was part of a business to create game cheats for Runescape that he and partners ran for a year in high school.

Also in high school he volunteered to manage the website for Relay for Life of Sherwood, Oregon. It was a project he initially viewed as a way to get some practical experience, but it became more than that.

“It felt good to be involved with that cause, raising money for cancer research, because cancer is what took my dad, so it was personally significant to me,” Cecchetti said. His father passed away when he was in fourth grade.

Although Cecchetti has less time for tinkering as a college student, he found time to create a tweak for jailbroken iPhones that has over 10,000 downloads, and an app that turns an iPhone into a mouse and keyboard for any device. He also designed and built an inexpensive sound effects system using a Raspberry Pi for the submarine at the Oregon Museum of Science and Technology.

In his first two years at Oregon State, Cecchetti earned scholarships for academic achievement including making the Dean’s list and receiving a scholarship from Pacific Power.  “I have to pay for school on my own, so scholarships certainly make it easier for me financially but it also makes my decision to stay in school a lot easier knowing my burden of debt will be less,” he said.

Perhaps it is not surprising that Cecchetti won the 2015 Eta Kappa Nu Sophomore of the Year Award at Oregon State. “Tanner stood out for his commitment to service, academic excellence and passion for problem solving. His impressive personal projects showed he was going above and beyond what was being done in the classroom,” said Oregon State Eta Kappa Nu president, Tanner Fiez.

Although Cecchetti’s experience has mostly been in computer programming, he chose to major in electrical and computer engineering because he was interested in learning about hardware which would be more difficult to learn on his own. He initially thought he would pursue a career in designing cell phones but his experiences at Oregon State have opened up more options for him and he is not yet settled on a career path. For now he is content to continue to learn and tinker with technology.

-by Rachel Robertson