Computer science freshmen, Brett Case, Logan Phipps and Taegan Warren had completed just one computer science class at Oregon State University, but their lack of expertise didn’t stop them from participating in QuackHack. The 40-hour gaming hackathon, held at the University of Oregon, challenged students to take an idea for a game and create a working prototype in a single weekend.
The trio entered the event for the learning experience and to see if they could create something with the basic programming skills they acquired in their introductory computer science class.
To their surprise, the virtual card game they created — in which players build hamburgers and feed them to the opponent — won an honorable mention for Best Scope, awarded to a team that had a reasonable goal and excellent execution of that goal.
“The judges were impressed not only by their execution, but how well the students knew their own skill in going after a project that was equal parts ambitious and reasonable,” said Jeff Bayes, QuackHack organizer.
More than 100 college students from 6 states, 14 universities and 16 different majors participated in the hackathon.
“We didn’t really expect to compete against more experienced people, but we decided we might as well go for it for our own benefit,” Phipps said.
“We just wanted to go and have fun and try to make something,” Case agreed.
To create their game within the short time frame, the team divvied up the programming components of the project. In the end, their separate functions had to come together to make the game work.
“It really makes you appreciate thorough design and pseudocode and flowcharts,” said Phipps. Jennifer [Parham-Mocello], our CS 160 professor, always talks about design, design, design. You
really need to have a large-scale design in advance; otherwise you can end up way over your head or you end up spending the entire time trying to debug.”
The teamwork is also crucial. “We helped each other with our weaknesses and built upon our strengths,” Warren said.
Parham-Mocello, who teaches the introductory computer science class, was thrilled with the students’ success. “This drives home what we teach: design, how to think and how to work in teams. They’re utilizing the principles that industry wants to see,” she said. “It’s not just about banging out code. We’re teaching students the proper way to do things from the very beginning.”
The Technology Association of Oregon (TAO) sponsored an Education Roadshow at Oregon State on May 28 to help students tailor their education to match industry needs. Representatives from AKQA, Columbia Sportswear, Hewlett-Packard, Tripwire and Vadio answered questions about what to expect when entering the workforce and how best to prepare. The event drew 250 students which was beyond the expectations of Danny Dig, assistant professor of computer science, who facilitated and moderated the event.
Maria Powell, who attended the event, said, “Being able to get first hand advice from professionals in the industry is invaluable to me. It not only gives me ideas of what I would like my goals to be beyond college but it helps me to be pro-active about my future right now.” Powell is a senior in computer science who will be graduating this August.
Nicholas Nelson, came to the event with more experience than most students since he worked in industry before returning to school in 2012 to finish his degree. “Our industry operates at such a fast pace, things that seemed common place three years ago when I was still working are likely to have changed. I wanted to be aware of the latest and greatest, and this industry panel did not disappoint. The diversity of panelists provided an excellent glimpse into both the start-up world and the established giants of industry,” Nelson said.
To make the time with the panelists the most effective, Dig polled students ahead of time to find out what questions they most wanted answered. The top two questions were: What questions should a prospective candidate ask during an interview? What kind of coursework and/or research projects are valued by industry? All the questions and answers are available on the EECS website.
“The students loved the event and many commented that these kinds of events make them feel lucky to be at Oregon State. Several of them have continuing discussions with the panelists about jobs and interviewing,” Dig said.
The event fits with the mission of the TAO to grow the technology economy in the region by providing programs and initiatives that support industry promotion, advocacy, professional networks, and talent development.
Dig acknowledged the help of the panelists: Bryce Clemmer (Vadio), Andy Neville (Columbia Sportswear), Andy Doan (AKQA), David Whitlock (Tripwire), Shelly Reasoner (HP) who volunteered their time to answer questions; Tina Batten who helped organize the event; Kevin McGrath, instructor for Operating Systems who gave up a class period for the event; all the students who helped generate questions and took notes during the event; TAO, which started the Education Roadshow; and Chris Scaffidi, associate professor of computer science, who had the vision of bringing the Education Roadshow to Oregon State.
Students in the School of Electrical Engineering and Computer Science (EECS) won three of the four overall awards at the Engineering Expo 2015. Additionally, the Industry Advisory Board for EECS recognized six other outstanding projects.
Boeing Engineering Excellence Award
The Boeing Engineering Excellence Award distinguishes a project team that delivers a robust and innovative solution with a clear focus on enabling potential customers to excel in their markets and missions.
Winner: EyeRobot. Team: Amber Hartman, Benjamin Narin and Kai Ovesen.
This project aims to help people with ALS (Amyotrophic Lateral Sclerosis) or similar diseases in which people lose motor control. Using eye gaze, the Electrooculography (EOG) headset provides an emergency stop for those who cannot physically hit a button. The project is in collaboration with researchers at the Personal Robotics Lab at Oregon State University who are developing a wheelchair that can drive itself using way points set by eye-tracking equipment. The head set measures electric potential across the eyes from two sensors placed on the temples.
Tektronix Commercialization Award
The Tektronix Commercialization Award winners will be evaluated based on the level of innovation and potential impact in the market.
Winner: Custom Car Head Unit. Team: Jordan Belisle, Megan Kamiya, and Trevor Buys
This custom car head unit for controlling the car stereo is a low-cost upgrade that has multiple audio input options and other connection capabilities including WiFi. The system also collects car data and generates web displayed reports on driving patterns.
People’s Choice Award
The People’s choice award was voted on by attendees to the Engineering Expo.
Winner: Eye Gaze System. Team: Sultan Alyamani, Trevor Fiez and George Vartanov.
This device is designed for individuals who have motor restrictions. Our goal for this project is to create an inexpensive eye gaze directional detector. Current eye-gaze systems use expensive technologies that are limited in their utility.
Electrical and Computer Engineering Industry Award Winners:
First place: OSU Rocketry – Payload Electronics. Team: Elliott Fudim, Tyler Giddings and Sagar Rotithor.
The OSU Rocketry team has built a rocket capable of ascending a 10 pound payload to 25,000 feet for the 2014 Experimental Sounding Rocketry Association (ESRA) intercollegiate competition. The Payload Electronics Team designed a payload that will conduct experiments and collect data during the rocket launch.
Second place: Persistence of Vision Globe. Team: Harry Bloom, Matthew Eilertson and Masa Kawaharada.
This functional persistence of vision (POV) globe utilizes LEDs spinning on a spherical frame in order to create a three-dimensional optical illusion of the Earth. The human eye can only retain an image for one twenty-fifth of a second. By flashing LEDs at precise increments as they rotate at a rapid speed, we can trick the human mind into seeing continuous lines of light, which will project an image. POV Globe video.
Third place: Smart Disk Wireless Switching Device. Team: Rachael Carlson, Alan Huang and Keith Kostol.
Is your light switch in the wrong place? The Smart Disk operates lights wirelessly so you put your light switch anywhere. Smart Disk video.
Computer Science Industry Award Winners:
First place: V2x Systems and Integration. Team: Stephen Austin, Ashley Greenacre, Chris Harper, Faith Steltzer, and Sam Quinn. V2x Systems video.
If cars could talk roads would be safer. This project combines sensors, networking, and an in-vehicle display to make driving safer by sensing when accidents occur and communicating the crash information to emergency responders and other vehicles on the road.
Second place: Camera Test Drone. Team: Loren Brown, Justin Cheng and Ken Hafdahl.
Vibration can be a big problem for cameras mounted on a moving vehicle. This anti-vibration system combines mechanical, electrical, and computer science elements to record and process flight video from a variety of cameras mounted to a quadcopter. Camera Test Drone video.
Third place: World of Fitcraft. Team: Nick Bristow, Tracie Lee and Vedanth Narayanan.
Having trouble getting fit? This app makes a game of exercise; users earn rewards and “level up” on their way to better health. World of Fitcraft video.
An Oregon State University team of computer science and electrical and computer engineering students earned third place at the Intel-Cornell Cup on May 1-2 at the Kennedy Space Center Visitor Complex in Cape Canaveral, Fla.
The purpose of the embedded design competition is to inspire student innovation. Entry into the event is competitive; only 22 teams from across the country were selected to attend. The chosen teams were provided with $1,500 in funding and the latest Intel Atom board which they incorporated into their project.
Auto Safe, the Oregon State team, designed a system to send information about car accidents to other cars in the area. The device includes sensors to detect crashes and rollovers, and a wireless mesh network to transmit information between vehicles. The device can be plugged in to any car 1996 or newer via the OBD II port. (See video below for a demonstration.)
The event was open to the public, so in addition to presenting to the judges, the team explained their project to crowds of elementary students who were visiting the Kennedy Space Center.
“Our project was really fun for the kids because they could drive the simulator. One girl, who had never played a driving game before, stayed for a really long time,” said Ashley Greenacre, senior in electrical and computer engineering.
Meeting students from other universities and seeing their projects was one of the best parts of the event for the team. Chris Harper, senior in electrical and computer engineering said, “We were all using the same hardware, so it was really interesting to see everyone’s different take on it.”
It was the first time Sam Quinn, senior in computer science, had participated in a competitive event. “It was eye-opening to see the troubles that go on behind the scenes,” he said. The team had to deal with last minute networking problems, but rather than be upset by it, Quinn said that he really enjoyed high pressure problem solving.
The hands-on experiences that the students receive by working as a team to design a product is why Kevin McGrath, computer science instructor and advisor to the team, recruits students to participate in the event every year. “There will always be challenges, and how you overcome those challenges dictates the kind of engineer you are,” he said.
In just 30 hours, Oregon State University students created wearable technology projects at HWeekend on April 10-12, sponsored by the School of Electrical Engineering and Computer Science. Thirty-five students spanning several areas of engineering formed seven teams and built projects that ranged from a remote controlled arm to a video game.
The event was organized by Don Heer, instructor in the School of Electrical Engineering and Computer Science, who wanted to provide students an event similar to a start-up weekend or app hackathon, but for hardware. It was the fourth event for Heer who values real-world experiences that augment the student’s classroom experiences.
To build their projects the students had a variety of components available to them including tiny computers, NVIDIA Jetsons, motion sensors and motors, and as access to 3D printers.
“It’s surprising how much this relates to my classwork, but also how much fun I had with it,” said Mark Andrews, student of electrical and computer engineering and math. It was the second HWeekend for Andrews.
About half of the students at the spring HWeekend had participated in one of the previous three HWeekend events that were sponsored by Eaton, Rockwell Collins and Micron.
Two projects: The Hand of Glory by Mark Andrews, Paul Lantow, and Conner Yates; and Go Go Gadget Claw by Tyler Gilbert, Ryan Green, Rattanai Sawaspanich, and Keaton Scheible are featured in videos below. The Go Go Gadget team won the Most Innovative award and tied for the Most Helpful award with the Mechanical Calf Assisting Device team.
Projects like a prosthetic hand and a spinning LED display were completed in just 30 hours at Oregon State University’s second hardware weekend (HWeekend) on October 18-19. It was a feat that amazed everyone involved including representatives from the sponsoring company, Rockwell Collins.
“I’m really impressed with the energy level and enthusiasm and the challenges that they took on. They were pretty big scope projects, and it was amazing what they got done in 30 hours,” said Bob Woods, director of engineering at Rockwell Collins, Heads-up Guidance System.
Instructor, Don Heer, came up with the idea of a hardware weekend based on start-up weekends that focus on software projects. Heer wanted something that would incorporate all branches of engineering to give students an opportunity to have the experience of developing a prototype device under time pressure while working in diverse teams.
That appealed to computer science student, Vedanth Narayanan, who was used to working on software development projects with other like-minded computer science students, but wanted to see what it was like to try and communicate across the different engineering disciplines. After 30 hours of work with no sleep, he was still gushing about the experience.
“It’s awesome to see it all come together knowing that it wasn’t just one group that did it. It was multiple different disciplines that came together,” he said.
Narayanan was part of the largest team of eight students who are majors in electrical, mechanical, manufacturing and industrial engineering in addition to computer science. Sean McGlothlin, a senior in computer science, came up with the idea for the project — an R/C car controlled by an Android app. It could have been an unwieldy number of students to work successfully, but they split into two main groups — mechanical and software — and had a designated leader for each. The team included Aaron Sprunger, a fifth year senior from industrial engineering with vast leadership experience who led the mechanical side. McGlothlin led the software team and the project design for the entire project.
“It was a great privilege to have my idea — something that was just a concept in my head — worked on by a team of very intelligent people, and in less than two days I was able to hold that concept in my hands. I’m really proud of our team,” McGlothlin said.
McGlothlin said the real value of the weekend was the chance to develop skills in project management and embedded programming. “I feel like I learned more in two days than I’ve learned in an entire term for some classes,” he said.
The two awards (Executioners and Helping Hands) both went to the team who built a force feedback prosthetic hand. The team hit all their goals including a sensor suite to give the user both tactile and visual feedback. For example, an LED would turn from green to red in the presence of heat. Team leader, Karl Payne overcame a major glitch when the 3D printer quit printing before the hand was complete. So, with 4 hours to go in the competition he laser cut the rest of the hand, pinning and gluing it into place. The team was also renowned for helping out the other teams, in particular Simon McFarlane was named as a stand-out contributor across the teams.
If there had been an award for humor it would have gone to the Q-bot team whose presentation of their ambitious project of a spy robot had everyone laughing. “It is very proficient in sneaking around corners and going completely astray in its direction and delivering a .2 frames per second video feed which is utterly out of color sync,” quipped Aravind Parasurama.
Throughout the competition representatives from Rockwell Collins were on hand to provide mentorship. Evan Marshall, an Oregon State alumnus and software engineer at Rockwell Collins admits to at first feeling obligated to come help out his alma matter, and was surprised at how much he enjoyed the experience, even sticking it out through the whole night.
“Seeing the impossible happen — that was fun. The people who were here brought all their own energy and that was contagious,” he said. He was impressed with the expertise of the students who knew more about their specialized area than he did, so he mostly helped facilitate discussions and motivate the students by letting them know from an outside perspective they were doing great things.
The sponsorship of Rockwell Collins made the entire weekend, including meals, free to the students. Heer was pleased with the success of weekend, which he plans to hold twice a year, the next one in January of 2015.
“I’m always amazed at the quality of our students and how, given the slightest opportunity, they will go the extra mile to do something innovative,” Heer said.
Projects:
Bit Car: An R/C car controlled by an Android app that was connected via Bluetooth. Kathleen Gladson, Joshua Grosserhode, Emmanuel Lopez-Aparicio, Sean McGlothlin, Vedanth Narayanan, Aaron Sprunger, Zachary Stark and Kyler Stole.
The Great Light Hype: A prototype for spinning volumetric display that could eventually render virtual objects mapped via localization to physical coordinates in a room. Kyle Cesare, Ryan Skeele, Jake Yazici and Soo-Hyun Yoo.
The Thing, Prosthetic Hand: A prosthetic hand that incorporated sensors and feedback, such as a pressure sensor that would trigger a vibration to indicate gripping force. Brenden Hatton, Judy Jiang, Scott Merrill, Simon McFarlane, Karl Payne and Fangyi Zhu.
Q-Bot: A voice controlled robot with an omnidirectional camera that streamed video to a smartphone or a tablet. Tyler Gilbert, James Harris, Keaton Scheible, Alwin Sudhana, Sorawis Nilparuk and Aravind Parasurama.
Oregon State University alumni Janice Levenhagen-Seeley and Jennifer Davidson returned to Corvallis last weekend to host a 2-day event to encourage high school girls to enter technology fields. Both graduates of the School of Electrical Engineering and Computer Science, Levenhagen-Seeley is the founder and executive director for ChickTech, a Portland-based non-profit, and Jennifer Davidson is the program manager.
Participants of the ChickTech event built robots, video games, smartphone applications, websites, light-up textiles, and 3-D printable projects like figurines or pendants. It was an eye-opening experience for many who said they had no idea what went on behind the technology they use every day.
That revelation is just what Levenhagen-Seeley was hoping for. She created the Portland-based non-profit organization in 2012 to foster a more inviting culture for women in technology, and in particular for opening the door of technology fields as a career option for high school girls.
“In high school I really enjoyed math but no teachers or career counselors ever thought to mention to me, ‘You should try this programing class,’ or ‘You should check out engineering as career,’” said Levenhagen-Seeley who majored in computer engineering.
ChickTech involves high school teachers by asking them to nominate female students in their classes who have the aptitude for careers in technology but have not sought out opportunities to learn more.
Phoenix Brooks from Veneta said she was nominated by her teacher at Triangle Lake Charter School and her principal encouraged her to take the opportunity. She chose the workshop on website development because she felt like no matter what career she went into, it would be useful.
“I had never really considered a career in web development, but I’ve always been interested in it and this workshop has given me a lot more insight. I’ve learned a lot,” Brooks said. “I’d definitely do it again.”
Haley Payne of West Albany High School and Audrey Hysell of Lebanon High School teamed up to create an underwater version of the Flappy Bird mobile app in which fish navigate hazards such as fish hooks, anemone and sharks.
“We haven’t yet got the fish to die when they hit something, but we’ll get there,” said Payne with confidence. By the end of the day, they were able to show off their finished app to visitors at who attended the Tech Show.
It is that kind of “win” that Levenhagen-Seeley wanted the high school girls to be able to experience and what motivated her to organize a longer event for the Corvallis chapter. ChickTech’s first event for Corvallis last year was a day-long workshop which was not enough time to create a finished project. Since many of the girls travel from as far away as Newport, the addition of an overnight stay in the dorms made the event possible but also added a new dimension.
“The overnight stay was a really exciting component because the girls were able to bond a lot more,” Levenhagen-Seeley said.
The event was made possible by volunteers from Oregon State, Garmin, Hewlett-Packard, and Intel. Funding was provided by OSU’s School of Electrical Engineering and Computer Science, OSU’s Women & Minorities in Engineering, Garmin, Tektronix, HP, Phase2, Kattare, and Korvis.
ChickTech has three chapters in Corvallis, Portland, and San Francisco, but is expanding nationwide to add 5 chapters next year, and 8 in 2016.
ChickTech is hosting a workshop on Aug. 23-24 at Oregon State University to encourage high school girls to enter computing and technical fields.
The event culminates with a show on Sunday, Aug. 24, that’s free and open to the public. It will be from 4:30-5:45 p.m. at the Kelley Engineering Center on the OSU campus, and participants will display the projects they built.
The students may help create a robot, build a video game, or make a smartphone application, and are mentored by industry and academic professionals from high-tech fields. The event is free for participants, and includes an overnight stay in an OSU residence hall. It’s sponsored or supported by the OSU School of Electrical Engineering and Computer Science, the Women and Minorities program, the OSU Library, Tektronix, HP, Kattare, and Korvis.
The event is designed as a fun, positive learning experience to build participants’ confidence in their technical abilities, provide positive role models, and create connections with other young women from the area.
ChickTech is a non-profit organization, founded in Portland in 2013 by OSU alumna, Janice Levenhagen-Seeley, who was motivated by her own experiences to foster a more inviting culture for women.
“It was hard to feel like I belonged as a woman in computer engineering,” Levenhagen-Seeley said. “So I started ChickTech to give other girls and women the support that I didn’t have. I want them to feel like they are welcome and have unique things that they are bringing to the industry.”
Five members of Oregon State’s Robotics club on the Mars Rover team took their finals early so they could travel this week to Worcester, Mass. for the 2014 Sample Return Robot Challenge. The event on June 9 to 14, is hosted by NASA and Worcester Polytechnic Institute and has nearly $1.5 million available for prize money.
Before leaving, the team disassembled the robot and each packed part of it into their luggage to avoid the costly shipping charges. For a team that is concerned about expenses, the prize money is a big incentive.
“Building a robot from scratch is a pretty expensive venture. So if we can win some money at the competition, then we can concentrate more on the engineering and the project itself,” said Billy Edwards, Mars Rover team leader and junior in mechanical engineering. The money would go towards scholarships, projects, and supplies for the lab.
During the challenge, the robot must work on its own to find a specific object in a park and return it to a designated point. The autonomous robot is guided by a computer program, and the team members are not allowed to control it during the task. The idea is to simulate conditions on Mars where GPS is not available, so the robot navigates by using cameras and other sensors.
“It’s really cool,” Edwards said. “It’s almost like seeing AI — to see something work on its own.”
The competition has two challenges. For the first challenge there is only one object to retrieve. Those robots that are successful compete in the second phase which has multiple objects. The week-long event also includes demonstrating the robot to the public.
Joining Edwards on the trip is Corwin Perren, electrical team lead, Lane Breneman, software team lead, Richard Cook, software senior design team member, and Erich Merrill, software senior design team member, all from the School of Electrical Engineering and Computer Science.
Beyond the prize money the team is excited about representing Oregon State.
“We want to show that OSU has successful teams and very good engineers. We want to show what we can do,” Edwards said.
The inaugural hardware weekend (HWeekend) at Oregon State gave 19 engineering students a taste of creating a prototype under time pressure. Six teams developed their ideas as far as they could in 30 hours, starting in the morning of May 31 and finishing June 1. Hosted by the School of Electrical Engineering and Computer Science the free event was sponsored by Eaton Corporation that provided hardware and food. Mentors from Eaton Corporation and Hewlett-Packard were on hand to help guide the projects.
“There are start-up weekends and app development weekends, but there wasn’t a program for something that covered the whole gamut of engineering, and included user experience. And I thought, ‘We can do that,’” said Don Heer, organizer of the event and instructor for the School of Electrical Engineering and Computer Science.
The theme for the weekend event was automation and non-obtrusive technology. Projects were as diverse as a moving trash can, and a cane for people who are visually impaired that would vibrate the handle when nearby objects were detected.
The teams formed after having a chance to interact with each other one on one. Students with ideas for a project wrote them up on a white board and other students shopped around for a group. Cross-disciplinary groups formed with students from electrical and computer engineering, mechanical and industrial engineering, computer science and chemical and biological engineering.
Cory Rea, a power systems engineer for Eaton Corporation who served as a mentor, said the weekend was a great way for students to get some real-world experience.
“Every day in my job I work with a team across multiple disciplines — mechanical engineering, electrical engineering, sales, project managers. So, it’s important to be able to collaborate effectively,” he said.
Hannah Marvin, a freshman in electrical in computer engineering, said she came because she wanted to make connections with students outside her major. Marvin was a winner of one of the “Ironman Awards” given to 17 students who stuck it out the whole 30 hours.
“It went a lot faster than I perceived it would. It’s really cool looking at everybody else’s projects, so that makes it go by faster,” she said. And even after several hours with no sleep, she was still positive.
“It’s really fun! Everyone should have a chance to do this,” she said.
It was a collaborative atmosphere where students helped out other teams when they could. One team stood out to win the “Helper Award.” Elliott Highfill, Travis Hodgin, Austin Hodgin, Max Schmidt, and Bradly Thissen worked on a project to play a game of tag with the TekBot robots, but were also a great help to the other teams by loaning tools, offering ideas, and help with coding.
The top award for execution went to a team that built a device to augment the function of a human arm as an aid for people with limited strength or other disabilities. Kyle Cesare, John Fritter, Ryan Skeele and Soo-Hyun Yoo intend to continue to work on the project which they hope to eventually be an exoskeleton suit including both arms and legs that can be easily reproduced by others without highly specialized equipment.
Heer hopes that events like these will show people how cool engineering is. “Engineers should be rock stars…they are the ones that make the world run,” he said.