Leaders in energy storage technology converged on the Oregon State University campus Nov. 5-6 for a symposium to discuss opportunities and challenges for next-generation, large-scale grid energy storage systems in the Pacific Northwest and nationwide.
The meeting, which drew more than 80 participants, served as a forum for industry representatives, utility companies, academic and government researchers, and policymakers to discuss energy storage and potential major applications in the region.
“This meeting exceeded our expectations,” said conference chair Zhenxing Feng, assistant professor of chemical engineering in OSU’s College of Engineering. “We are creating new possibilities for collaboration among the leaders in energy storage systems for sustainable energy technologies.”
The symposium was organized by Oregon State with assistance from the Joint Center for Energy Storage Research, a public/private partnership established by the U.S. Department of Energy in 2012. Presenters included researchers from Argonne National Laboratory, Pacific Northwest National Laboratory, Idaho National Laboratory, and the U.S. Army Research Laboratory. Industry representatives from 10 companies were in attendance, including Organo Corporation from Japan, China’s Neware Technology, Nissan North America, and Lebanon, Oregon-based Entek Manufacturing.
A poster session showcased work by graduate and undergraduate students from Oregon State University and the University of Washington. Awards went to the top three presenters, all from Oregon State.
Ismael Rodriguez Perez, a graduate student in chemistry, received the top honor and a check for $250 for “Pure Hydrocarbon Cathodes for Dual-Ion Batteries – A Trend.” Justin Tran, a recent chemical engineering and sustainability graduate, took home second place ($150) for “Incorporation of Polymorphic Spacers to Inhibit Sintering of SrO/SrCO3 for Thermochemical Energy Storage.” Kofi Oware Sarfo, a graduate student in chemical engineering, was awarded third place ($100) for “Investigation of γ-Al2O3 Surface and Interface with Pt(111) Using Density Functional Theory.”
The full symposium program is available online at cbee.oregonstate.edu/energy-storage-symposium.