humpback_1024x10241
Album cover of Roger Payne’s 1970 LP. Due to this record humpback whales are arguably to most listened to whales on earth.

One of the special things about studying marine megafauna is how completely and unequivocally devoted their fans are. Judging from the popularity of Roger Payne’s best selling  1970 LP “Song of the Humpback Whale”, I think it’s fair to rank humpback whales  among rock idols like David Bowie, Mick Jagger, and Madonna in terms of popularity. I feel quite confident, however, that the number of students willing to dedicate their careers to spying on and eavesdropping on whales, is higher than those that are actually interested in professionally shadowing Cher for months at a time.

Whales are a part of our human culture; this is unequivocal. The traditions of Inupiat whalers are passed between generations, skills are shared among whaling teams, and successful bowhead whale hunts are the inspiration for song, story, and festival. Historically, the oil of whales has shaped course of human history. The first street lights to brighten the dark streets of London burned whale oil; the city saw an almost immediate drop in crime as a result. Spermaceti literally greased the wheels of the industrial revolution, not to mention the gaskets on US spaceships. Our human history, — our human culture — has been shaped by the body of whales.

010715whaling6
Whaling is a community event in Barrow. Even Inupiat children too small to help process bowhead catches are still brought to see the whale. (Photo credit: AP Photo|GregoryBull)

The cost was enormous.

Industrial whaling was responsible for the largest removal of biomass from the world’s oceans… ever. Great whale species were hunted to the brink of extinction, or in some cases past the brink of extinction, to fuel the market for oil and other whale products.

While arguably the loss of life at this scale for any species would be considered a tragedy, there was a concomitant loss of something that makes the epoch of industrial whaling somehow more poignant: cetacean culture.

Whales and dolphins have culture. While this phrase makes some cultural anthropologists cringe, and has certainly sparked its fair share of debate, this phrase is generally accepted among behavioral ecologists and marine mammal biologists.  But what does it mean?  Technically and in terms of conservation?

Culture can be defined as shared behavior propagated through social learning. In humans an example of this can be culturally specific foods. For example my grandmother taught my mother how to make seafood gumbo. My mother in turn taught me how to make gumbo. The act of making gumbo is a shared behavior that was learned; making gumbo it is part of our culture.

Humpback whales don’t cook, they do eat. In the same way that methods of cooking vary between human populations, methods of hunting vary between humpback whale populations. In Southeast Alaska humpback whales use feeding calls in combination with bubble blowing to herd herring toward the surface of the ocean and then *gulp*.  No other population of humpbacks in the world, that we know of, pair this call with this behavior. It appears to be a learned behavior; culture.

Similarly, in the North Atlantic humpback whales slap their flukes to herd fish in a behavior known as lobelia feeding.  Based on years of observations, and the hard work of a bright you grad student, we learned that this foraging technique was spread culturally throughout the population. Which means to say that individuals learned it from each other. Significantly, humpback whales also learn where to forage. They gain information from their mothers during their first year of life that tells them where to migrate to, good spots on foraging grounds to find and catch a meal, and what is good to eat.  This is where conservation comes in.

During the height of industrial whaling large portions of whale populations were extirpated. When those whales were removed from the system, their traditions died with them. For some baleen whales that loss of cultural knowledge has led to the abandonment of fertile foraging grounds, and in other populations it has led to high fidelity to poor foraging grounds without the knowledge of any alternatives.

So understanding culture in whales matters. It matters because it helps us to understand their adaption to population recoveries, it allows us to track their plasticity and resilience, to understand how and why one whale population differs from another, and maybe  it allows us another way to relate to these animals.  More personally, perhaps by understanding the importance of culture in whales we can begin to value the importance of culture in our own world, in our own country, in our own lives. Something, I would argue, that we might need right now.

Humpback whales bubble net feeding in Southeast Alaska. Culture in action.

 

 

My broken heart limped off of Strawberry Island a few weeks ago on a day when the fog was too thick to permit my sentimental heart watch the island fade into the distance. But while our field season on the island had come to an end, my field work for the summer was not quite complete.

My work in Glacier Bay studying humpback whale acoustics is partially based on my previous work conducted from the Five Finger Lighthouse. I’m interested in comparing the two regions (both the soundscapes and the behaviors of the whales themselves), as we have historic population and acoustics information from both regions dating back to the late 1980’s (Thank you Malme and Miles! Thank you Scott Baker!). To get the ball rolling on this comparison I made my way to the Five Finger Lighthouse for a short 10 day foray into “late season acoustic behavior”.

I don’t have anything definitive to report, except that the team of volunteers who have been working on maintaining my favorite historic structure have been hard at work, and that the whales were abundant beyond my wildest dreams. If Glacier Bay is indicative of high quality interactions with individual humpback whales (remember Cervantes), than Frederick Sound is a strong argument for quantity over quality. In this, my tenth summer spent with Alaskan humpbacks, I finally broke the record for highest concentration of animals in a single area. Don’t believe me? Watch the short clip below and see a glimpse of the 40+animals milling around the region. Once you’re done watching, listen to the sound file to get an idea of what these animals were saying when this video was filmed. In my humble opinion, it is in this pairing of sight and sound that we begin to understand.

Watch

 

Listen

(These videos and recordings  were collected  under a research permit and with zoom lenses. Endangered or not it is a violation of the Marine Mammal Protection Act to approach a humpback whale within 100 yards, to alter the behavior of an animal, or to recklessly operate a vessel — even a kayak– in the presence of humpback whales). 

Going to bed (and by bed I mean tent) on the island is easy. It is often rainy and cold;  recently the days have been growing shorter revealing black starless nights that challenge my trust of these old woods, and when the weather is clear enough to work our days can be long. But occasionally as we are tucking ourselves into our sleeping bags at night something happens that’s worth getting up for.

This was the case a week or so ago when the exhales of one whale (SEAK-1899, a.k.a. “Nacho”, a.k.a. “Cervantes”) persisted for so long, and with such intensity, that we left our tents and made our way in the fading sunlight out to the beach to see what was going on. As it turned out Cervantes was feeding in our intertidal; take a peek.

Cervantes visits us often these days. This isn’t unusual for for Glacier Bay whales, which exhibit strong maternal site fidelity to the Park (for a really interesting scientific read on local recruitment of humpback whales in Glacier Bay and check our Sophie Pierszalowski’s master’s thesis here), but it is new for our field team here on Strawberry Island. The ability to recognize and interact with an individual humpback whale in such close proximity requires patience, attention and time. While our team last year grew capable of discriminating between individuals whales (a requirement for focal following a whale that’s a mile and a half away), the ability to recognize an individual whale with certainty every time one sees it requires repeated interactions. For humans who are a measly 1.75 meters tall, these interactions are imprinted for efficiently if they occur at close range.

Individuality matters. Increasing evidence for personality in animals confirms what pet owners for decades have intuitively known – animals have unique dispositions. Not all whale are created equal, and to understand how the population as a whole may respond to changes in the environment, necessitates sampling a wide swath of individuals. For example, if we follow Cervantes around from birth until death we may conclude that all humpback whale forage intertidally (likely not the case), that all whales annually migrate (also not entirely true) and that all humpback whales blow bubbles at their prey (which would be interesting… but unlikely).  Further, what if Cervantes proved to be an anomalous whale? Not wholly on the “average” spectrum for whale behavior. Cervantes is of unknown sex; it is tempting to infer that an adult whale of unknown sex who has never had a calf must be male (this is in fact what our field team inferred). The possibility, however, fully exists that Cervantes may be a late bloomer who will calve in the future and against what we anticipate given the average age of first calving, prove herself to be a lady whale after all. If Cervantes was the only animal we studied, we might infer an age of first calving for humpback whales that wasn’t accurate for the majority. So if we want to understand whales instead of understanding whale we have to look at many individuals.

Cervantes (SEAK-1899) visits the Strawberry Island survey point frequently. The entanglement scars near the dorsal fin help our team to identify this whale.

Why then are these repeated interactions with Cervantes so valuable? They are valuable scientifically in that we have the ability to investigate individual variation by linking behaviors with a known animal. More importantly for our team right now, however, these interactions are valuable to us personally. Living in the presence of giants inspires a person; knowing the giants’ name and saying good morning to him everyday, in my humble experience, moves a person beyond awe and into action. As overused as the Jacque Cousteau quote is, one cannot deny that people protect what they love. Cervantes’ ability to exist in such close proximity to our camp give us permission to love these animals, this shoreline, and this ocean just a little more strongly. This is a gift, and I am grateful.

The marine forecast is calling for 25-knot winds and 5-foot seas in Glacier Bay National Park today. Yesterday, when we were tightening the last nylocks on our hydrophone landers, and working out the last details of our array deployment, folks were pretty keen to remind us that the weather was going to kick up. I decided not to be nervous, what’s the point.

IMG_0395
Clockwise from upper right: Snacks, Kenya, Bumblebee, and Bruiser.  The hydrophones that listen where we cannot.

Today in the rain and the fog we put four instruments, that our team has literally pour blood sweat and tears into, into the ocean for a second year. Aside from one overactive buoy on the final drop (I turned to Chris and said, “My only concern is about that buoy.” I should have listened to my gut sooner), our day went smoothly and quickly – despite the persistent drizzle and fog dancing on deck. Our efficient little team completed the deployment by 10:45am. Plenty of time for a quick visit to Strawberry Island, and a boat ride home, all before the weather hit. Unlike last year, where we hooted and hollered our victory, this year the boat ride back was subdued. I didn’t dance a victory dance, I sighed a blissful sigh of relief.

Want to know something though? The best part of today wasn’t getting the hydrophones in the water (though long term, I’m certain that’s what I’ll be most grateful for), the best part was seeing the harbor porpoise sipping air off the port side of our deployment vessel, watching the bull sea lion growl with his huge mouth agape, and spotting the seals and birds diving after the same schools of small fish. I love our hydrophones – don’t get me wrong. I’ve slept with them next to my bed at night, kissed their housings, and whispered sweet nothings to them. I love them most, however, because they give me the motivation, the inspiration, and the permission to be outside here in Glacier Bay.

The National Park Service is having its centennial anniversary this year. It has been one hundred years since the intrinsic value of our wild places was recognized, and protected for no other reason than to ensure its persistence. Being a part of this legacy is something that I can’t quite put words too. Joining the ranks of my mentors, past and present, and contributing to what we know about and how we interact with the natural world with forever be one of my greatest achievements. I’m fortunate enough to stand in the footsteps of giants; for me, however, those footsteps were carved out by the journey of glaciers moving through this landscape well before I was born. Footsteps that have become the ocean home to the animals that I love, and the backdrop to the science that I create.

IMG_0413
Staged and almost ready to go on the dock in Bartlett Cove. Our equipment prep was completed in the company of otters, eagle, and Bonaparte gulls happily cackling

Technology enables me to listen to a world I otherwise cannot hear, but it is the sound of the ocean butting up against the islands that brought me to acoustics in the first place. We human tool users are ingenious in finding ways to solve problems and answer questions. Places like Glacier Bay, however, are essential for inspiring the questions in the first place.

One hundred years. That’s not a trivial tenure. How many times over the past 100 years have you visited a National Park? If you’ve never been, let this be the year that you find your park. I’ve certainly found mine.

IMG_4258
The view from Strawberry Island, overlooking our hydrophone array: Glacier Bay National Park

 

 

 

 

…A question that sometimes occurs when I tell people that I study the sounds of the whales. Still, my very close non-scientists friends do think that I try to talk to dolphins. This might not be accurate since my research equipment and purpose of my study do not allow anything like this, but essentially I do try to spy on their “conversations”.

dorry
Meet Dory, a (fictional but funny) colleague of mine

One of the functions of sound in dolphins and whales is communication. Communication is a keyword in bioacoustics and is defined as being “the transmission of a signal from one organism to another such that the sender benefits from the response of the recipient”. There are different purposes that it serves living organisms and different ways to express it.

A primary purpose of communication is to attract and repel. Plants use chemical signals that get transmitted through the air or their roots, people use the smell of pheromones to attract each other, and skunks use the same signal to repel. Dogs and foxes use face and body gestures to express submission and aggression. Elephants use touch interlinking their trunks as a means of close communication. Especially for attracting mates, vision (peacock elaborated feathers) and sound (bird songs) are both very useful.

 

Do you get the message?
Do you get the message?

Though the most common well-known animal communication signal heard by humans is the bird song, there are all sorts of animals that rely on their hearing and vocal ability to succeed and survive. Whales, the modern giants, appear to be experts in the art of sound communication with different species each having their own sounds. They use these sounds to navigate, locate and capture prey, communicate about the environment and the availability of food or predators, and to attract mates or repel competitors.

Whale chat #alltheycareforisfoodandromance
Whale chat #alltheycareforisfoodandromance

http://www.michw.com/

Such acoustic signals may be (a) instinctive that is genetically programmed or (b) learned from others through social learning.

Social learning is the information moving through communication from one organism to another. This information then passing on is what we call culture. Without this transfer there would be no life, no evolution, no biology. Culture is why we have the Parthenon, the South Park, boy bands and the MIT. What you read, like this blog, that you may pass it on is culture.

Random example of culture: the Parthenon
Random example of culture: the Parthenon

Cultural transmission, the social learning from conspecifics is believed to occur in a number of groups of animals, including primates, cetaceans and birds, elephants and bats. Cultural traits can be passed through different paths.

Cultural transmission can be done vertically: from parents to offspring, obliquely: from the previous generation via non related individuals to younger individuals, or horizontally: between unrelated individuals from similar age classes or within generations.

cultural transmission
3 families of sperm whales and how they get their culture transmitted

Of the several types of social learning which have been recognized, imitation is particularly significant for the propagation of culture. Humans can imitate new sounds and learn how to use them correctly in social situations. This is called vocal learning which is considered to be one of the foundations of language.

My favorite example of imitation in the animal kingdom is the lyrebird of S. Australia, which has an unbelievable capacity for mimicry. During the breeding season in South Australia, the male lyrebirds spend six hours a day calling, doing their best to attract the ladies. They have the most complex syrinx (vocal organ in birds), and they make a remarkable use of it!

I know I am repeating myself since I have posted a video of the lyrebird before  but this time the famous mime has enriched its repertoire with more sounds that will make you wonder how and why… Check out the lyrebird’s latest hits here.

Next I would like you to meet Luna, another excellent mime; Luna is a male orphan killer whale. Luna has been all alone since the age of two, living off the coast of Vancouver Island, Canada. There, in 2001, Luna became popular for getting in close proximity to people, interacting with local boaters and perfectly mimicking boat noises. A tragic result of this interaction was the tragic death of Luna in 2006 due to a tugboat collision!

Culture, through social learning, has been studied and papers have been published mainly in only four species of cetaceans: (1) the humpback whale, (2) the sperm whale, (3) the killer whale, and (4) the bottlenose dolphin.

Humpback: the Diva

Humpbacks are the most popular singers of probably all the non-human mammals. They have even released CDs with their songs ! When we think of whale songs the humpback is what we have in mind. They represent the best understood horizontal culture of cetaceans.

The males produce series of vocalizations that form songs used in sexual selection (through mate attraction and/or male social sorting). Their songs are very complex and can be heard mainly in breeding grounds and whales can hear them up to 10 km (about 6 miles) away. Whales sing the same song for hours and hours. Populations within an ocean basin have similar songs with this similarity dependent on geographical distance between populations.

Humpbacks can change their song after hearing other songs. A terrific example takes place in the southern ocean where the songs are horizontally transmitted from eastern Australia in the west across the region to French Polynesia in the east. The songs have been documented radiating repeatedly across the region from west to east, usually over a period of two years. The result: soon the song that was recorded on the east region is now fully replaced by the west region hit. This seems to me to be really similar to our music culture transmission.

Earworm!
Earworm!

Killer whales: The Intellectuals

The Sea Pandas (as some marketing teams have proposed renaming killer whales to help promote their conservation) are highly social.

The cheeky ones
The cheeky ones

The populations off the west coast of Canada have been studied for decades and are divided in different ‘‘types’’: the residents, transients and offshores. These 3 different types have diverse feeding preferences and subsequent vocalizations. The residents feed on fish and are highly vocal, the transients feed on marine mammals and are much quieter to not reveal their presence to their prey that has good hearing abilities. The offshores are also highly vocal and feed on sharks and rays.

Picture1
Extroverted vs. Introverted (Resident vs. Transient)

Killer whales that are separated by great geographical distances have completely different dialects. An analysis of Icelandic and Norwegian killer whale pods revealed that the Icelandic population made 24 different calls and the Norwegian whales made 23 different calls, but the two populations did not share any of the same calls.

Besides dialects, killer whales have been shown to learn vocalizations from other species. Yes, they speak foreign languages! At a water facility, where they socialized with bottlenose dolphins, they changed the types of sounds they made to resemble those of their neighbors.

If I was not so enthusiastic about the sperm whales, killer whales would definitely receive most of my scientific admiration. They have evolved outstanding sophisticated hunting techniques and their vocal behavior is impressive, being specific to certain groups and passed across generations. Killer whales are great examples of cultural organisms.

Keeping these animals in captivity sounds like  even less of a good idea now, right?

Bottlenose dolphins: the Eponymous

Bottlenose dolphins are well known for their signature whistles. They have stereotypical signatures attributed to each individual that work as their name. This helps to maintain contact between mom and calf or between individuals in a group. Each bottlenose dolphin has its own unique whistle and it uses it to broadcast their location and identity to others.

3 different whistles from different individuals. Hard to call a dolphin by its name...
3 different whistles from different individuals. Hard to call a dolphin by its name…

Most of the characteristic whistles are usually fixed for all the lifetime of the dolphin. However in some cases, when a male dolphin leaves mom and joins with other males to form an alliance (which might last for decade), their distinctive whistles converge and become very similar. So the longer they stay together the more similar their whistles become. Based on the same reasoning, I can’t understand why my English accent is still the same after three years living in USA!

Sperm whales: the Bignose

Sperm whales are among the loudest animals on Earth, and my favorite (not sure if I have already mentioned my preference). They owe this to their huge nose which functions as a massive click producer. They also have the biggest brain. They produce a variety of loud and distinctive types of clicks for different functions. One of these types of vocalizations is called coda. It is stereotypical patterns of clicks resembling Morse code, and frequently serves social purposes. Codas are usually heard when the group of animals rest or socialize at the surface of the ocean. Similar codas used by one group may help maintain group cohesion after its members are done feeding.

hanging
Chilling after dinner

It is thought that each sperm whale has its own individually distinctive coda pattern and it has been reported that groups within one geographic area tend to have more similar codas than groups from further away. The “five regular” call is one of the few codas that all sperm whale groups around the globe use in their regional dialects; while the “plus one” type seems to be specific to Mediterranean inhabitants. These vocal behaviors are transmitted vertically, and loosing members of the population may seriously impact the transmission of this cultural trait that carries important information content vital for the survival of the population.

The "regular 5" and the "plus one" codas
The “regular 5” and the “plus one” codas

 

 

We don’t need to watch Interstellar to search for life in different solar systems and unknown worlds. Like Anne Stevenson said: “the sea is as near as we come to another world”.  The ocean is vast largely undiscovered. We can consider the open sea an intriguing new wet universe. In interstellar, communication or miscommunication played an important role and turned out to be vital for rescuing the world. Father and daughter that could not directly speak to each other used binary code to transmit their messages through different dimensions. The cetaceans also transmit their messages through codes that we try to identify and understand. It is vital for their world to be able to use these sounds to communicate. You can correctly guess that we are using their home for our anthropocentric purposes and we are being very noisy neighbors, polluting their ocean and impacting their survival. This can be changed… If you are looking for New Years resolutions…

Like in the movie, it’s not Them that will help us save the world. No external factors are required, all the power is in us!

tumblr_nerqcpMdq71r02d8do1_500

Happy, quiet and peaceful holidays to y’all!!

This post was inspired by the presentation that me and Selene gave on Saturday 12/13/2014 for the Oregon Chapter of the American Cetacean Society entitled: “Do you speak whale?”.

…but first a name

This is what we see when we study humpback whales... but what do we hear?
This is what we see when we study humpback whales… but what do we hear?

I’ve dedicated the past 3 years to understanding non-song vocalizations, which admittedly is just a drop in the bucket. Now, as I venture into my fourth year of this relationship I have to acknowledge that I’ve moved from one chapter of my research into another. The Rapunzel Project (the whimsical name for my M.S. project) was my first foray into bio-acoustics, large scale fieldwork, and in internship development. While I wouldn’t consider myself an expert at any of these things, I’m also no longer a novice. I defended my thesis, we’re working on publications, and by and large I’ve put the Rapunzel Project to rest (I even retired the blog!).

All that being said I’m thrillingly eyeball deep in my PhD (first committee meeting: check!), and my research is actually rolling along in advance of my first field season (patting myself –very lightly – on the back). I’ve been giving talks on my research, and the blog posts are rolling out in various forms and locations. With all of this communicating about my research I became aware of something, my project didn’t have a name. Now I know that naming each project isn’t mandatory. Some people name their cars, some don’t; some people name their research, others don’t. But I have to admit writing the words “my dissertation research” over and over has grown tedious. As someone who values accessible communication as well as the role of creativity in science, I reached out to my fellow lab mates and asked for help with a name.

Calypso as she wistfully watches the sea... for humpback whales of course
Calypso as she wistfully watches the sea… for humpback whales of course

Suggestions varied wildly (“Life is the bubbles” anyone? How about a Calypso reference… so much fun). The name we settled on was astutely suggested by none other than ORCAA’s Selene Fregosi (maybe that writing workshop she wrote about helped with more than just her thesis). Without further ado let me introduce you to ORCAA’s Acoustic Spyglass: investigating the impact of vessel noise on humpback whale non-song behavior from the shores of Glacier Bay National Park.

I’m please with this name because (a) it incorporates both the visual and acoustic elements of the study, (b) because the use of a hydrophone array to localize animals is quite literally a form of “acoustic spying”, and (c) the use of a spyglass implies both antiquity and a sense of looking forward. When you pair visual observations with passive acoustic monitoring you are often looking forward (to the sea, tracking whales), but often technological constraints require that you listen retroactively after the hydrophones have been recovered. In this way I am quite literally listening to the past.

Listening to the Past

Nowhere is this more poignant than in the first chapter of the Acoustic Spyglass (see that… not “my dissertation research”), where I investigate non-song call stability at the decadal scale. I’ve acquired recordings of non-song vocalizations in North Pacific Humpbacks from the mid-1970’s through present day. I’ve been reviewing these to assess if non-song vocalizations, similar to song, change rapidly with time, or if humpbacks exhibit vocal stability. It is well known that humpback whale song changes annually, and this change is believed to be culturally mediated. Little is known, however, about how non-song vocalizations stand up to the test of time. Understanding the stability of non-song vocalizations may tell us something about call innateness, and may provide clues into how these vocalizations are used. Further, if non-song vocalizations (or specific types of non-song vocalizations) have been relatively stable for the past four decades then they may act as a metric against which to quantify change in the face of a shifting baseline (increasing ocean noise, climate change).

What’s so exciting (to me and possibly the ~twelve people who study non-song communication in humpback whales) is that based on first glance at least one call type – the SEAK Whup call – is remarkably stable over time! I’ve detected this vocalization in every data set currently in my possession. I want to be clear, that these findings are anecdotal at this point.  I’ve only just started quantifying my samples, and I have a long way to go before everything is sufficiently measured and described.  But from first glance would you agree that these spectrograms look pretty similar?

"Whup" calls, R-L: 1976, courtesy of Roger Payne; 1982 courtesy of Greg Silber and Adam Frankel; 1995 courtesy of Fred Sharpe
“Whup” calls, R-L: 1976, courtesy of Roger Payne; 1982 courtesy of Greg Silber and Adam Frankel; 1995 courtesy of Fred Sharpe

There’s something magical about listening to vocalizations that were produced in the 1970’s and hearing some of the same purrs that I’ve grown familiar with.  That the scientific community forty years later is just now beginning to investigate what these non-song vocalizations mean is a testament to the breadth of research yet to be done on Southeast Alaskan humpback whales.  Humpback whales are long-lived, with lifespans that can reach 90+  years.  This means that the whales in these historic recordings may still be vocalizing in Southeast Alaska today.  Or perhaps these recordings may be a link between a previous generation of whales and those who have only recently made it to Southeast Alaska to forage.  In either case the analysis of this long-term acoustic data set is the first step to answering some of the basic questions about how humpback whales communicate and I’m extremely excited to be listening.

 

~This work is extremely collaborative. Data contributions have been made my individual researchers referenced above as well as the National Park Service, and the Alaska Whale Foundation~

 

***Follow my monthly blog posts here, or check out my personal blog mfournet.wordpress.com for a comprehensive look at my research world***

Hello Acoustics Aficionados!

Getting to know Glacier Bay National Park and Preserve!  I was grateful for my Helly Hanson rain gear.  This temperate rain forest stops for no one.  A welcome relief given Oregon's hot dry summer
Getting to know Glacier Bay National Park and Preserve! I was grateful for my Helly Hanson rain gear. This temperate rain forest stops for no one. A welcome relief given Oregon’s hot dry summer

A few weeks ago I wrote to you about my upcoming trip to Glacier Bay National Park and Preserve and my big “Solo” adventure into the great Alaskan Wilderness.  Well I’m happy to report the trip was an enormous success and — like so many endeavors in science — all of my “solo” work was accomplished through collaboration.

The purpose of the trip was threefold (1) familiarize myself with Glacier Bay and the surrounding community, (2) identify a viable field site that would enable Leanna and I to meet our dissertation goals, and (3) to build and maintain relationships (with the area and with the people).  In short, my goal was all about getting my feet wet in the world of Glacier Bay research, which as it turned out was an extremely easy to accomplish literally and figuratively — Southeast Alaska is very very wet.

Xtra-Tuffs.  Don't leave home without them.  Further, it's how airport employees know you'll be spending the night in the SeaTac Airport, and that may gain you a little peace and quiet overnight.
Xtra-Tuffs. Don’t leave home without them. Further, it’s how airport employees know you’ll be spending the night in the SeaTac Airport, and that may gain you a little peace and quiet overnight.

The nearest airport to Glacier Bay is in the diminuative village of Gustavus (small town, big character).  Living in Juneau off and on for years I’d heard a lot about this tiny place — slow bicycle races and town-wide pancake breakfasts on the Fourth of July, a community garden that would make most Alaskans blush.  With a population that ranges from 350-600 (with an influx of seasonal workers in the summer) Gustavus isn’t exactly what you’d call a city, even by Alaskan standards… and it’s not so easy to get there.

I traveled via shuttle from Corvallis to PDX (nothing new here) and hopped a flight to SeaTac Airport where I settled in for a cozy overnight on an airport bench.  It felt very familiar.  Traveling to and from Southeast Alaska (for less than a small fortune) requires patience, a little bit of traveler’s tenacity, and typically an overnight in Seattle.  Sipping an evening tea and looking around the airport I was not the only one with Xtra-Tuffs on bunking down for the night… there were quite a few of us headed home.

It's a bit remote, but the trip to Gustavus is beautiful!
It’s a bit remote, but the trip to Gustavus is beautiful!

A 6-hour layover in Juneau was just enough time for coffee with University of Alaska- Fairbanks PhD student and humpback whale biologist Suzie Teerlink, who filled me in on some of the details of her citizen science initiatives, whale watch cooperative efforts, and some of the in’s and out’s of her Juneau fluke ID project. My first foray into humpback whale research was working with Suzie on some of these projects in their infancy, and was exciting to see how much they’d grown!  We wrapped up our reunion with a quick hike before heading over to Wings of Alaska and boarding the 6-seater Cessna 207 turboprop aircraft that would safely transport me over over the mountains and fjords and set me down in Gustavus, AK. There I was warmly greeted by the Park whale biologist (and co-PI on our project) Chris Gabriele.

Over the next few days I had the chance to meet a number of the Park Staff (fisheries biologists, bear biologists, research technicians, administrators and more!), and importantly Chris and I had the opportunity to talk (face-to-face) about humpback whale non-song vocalizations — also called social sounds — produced in Southeast Alaska.  Chris and her colleague Lauren Wild of the Sitka Sound Science Center have a new study coming out in the Journal of the Canadian Acoustics Associations on the acoustic properties and usage patterns of the humpback whale “whup” call.  The call (which can be heard here), which is a putative contact call, plays a large role in my research past and present.  I hope to build off of the work they began at the Park to understand more about how humpback whale use this and other vocalizations, as well as how vessel noise may change vocal behavior (including producing the “whup” call) or limit acoustic communication space.  More details on that, and the first chapter of my dissertation, in my next blog post.

Our field site requires an elevated viewing platform, visual proximity to both whales and seals, low current, and as much logistical ease as possible (i.e. is there water?  Is this dense bear/moose territory?)
Our field site requires an elevated viewing platform, visual proximity to both whales and seals, low current, and as much logistical ease as possible (i.e. is there water? Is this dense bear/moose territory?)

Back to the trip, I would be remiss if I led you to believe that we spent all of our time talking (remember goals 1 & 2!).  While initially we didn’t think we’d have access to a boat (hence my initial decision to camp on the island for a few days), much to my excitement the Park research boat R/V Capelin came available.  My second day in the Park was spent on the water scouting for field sites, measuring bottom depths, marking waypoints for locations of interest, and kayaking through non-motorized waterways to scope out potential field sites.  I’m happy to report that we found one!  After eliminating what looked to be a lovely cliff (with lots of blind spots and bear scat), and a good hike around Bartlet Cove where the Park’s current hydrophone is deployed (and where vessels transit daily), it was the north east tip of Strawberry Island that made the final cut.  It might not look like much in the photos (did I mention that Glacier Bay is part of a rain forest?), but I think it’s exactly the spot we’re looking for.

It doesn't look like much here, but come summer 2015 we'll be tracking whales and counting seals right here!
It doesn’t look like much here, but come summer 2015 we’ll be tracking whales and counting seals right here!

With a field site decided (Goal 2, check!) one of the last things I was hoping to accomplish on my trip was to familiarize myself with the area, both terrestrial and aquatic. I was fortunate to spend another day on the water with Chris during one of her many whale surveys.  It was a great opportunity to view whale behavior in the Park, which I’d anticipated would be different than the behavior I’d observed in Juneau or in Frederick Sound (and qualitatively, it was different); but it also gave me the chance to see more of the Park wildlife (otters! so many otters!) and get a feel for how operations work there.  Part of getting familiar with an area involves knowing how to have the least negative impact both ecologically and culturally.

A Tlingit Canoe sits on the shores of Bartlett Cove
A Tlingit Canoe sits on the shores of Bartlett Cove

I took a camper orientation which gave me some good tips on how to minimize my impact on the island, but I also spent some time walking through the exhibits and chatting with Park employees, trying to get a feel for both the scientific community at the Park and the rich cultural heritage of the native people in the area.  Long before Glacier Bay became a national park it was the ancestral home to the Huna Tlingit people.  Near the end of the Little Ice age the glaciers (of which there are MANY) surged forward and the Tlingit were forced to abandon their settlements in the bay and move across Icy Straight to establish a new village.  To the Huna Tlingit, Glacier Bay remains their home.  In Barlett Cove (where the Park headquarters and the Glacier Bay Lodge are located) the presence of the Tlingit culture is palpable.  A Tlingit canoe is on display and current plans are underway for a Tlingit Tribal House.

In what I thought was a poignant manifestation of the culture of science alongside the culture of people, on the same path as the canoe is a structure housing the recently re-articulated skeleton of a humpback whale named Snow, who was struck by a vessel in the Park in 2007. Snow’s bones were buried, cleaned, sent to Maine for articulation and organization, and then finally returned to the Park for the final installation.  In a “Alaska’s such a small place” sort of way, one of my first field technicians, Linsday Neilson, was on the articulation team.  The skeleton was complete by the time I arrived, but I did manage to catch her for a long overdue hug on the dock.

The recently articulated skeleton of a humpback whale names "Snow". Snow was struck by a cruise ship in the Park and after 7 years has been returned to the community.
The recently articulated skeleton of a humpback whale names “Snow”. Snow was struck by a cruise ship in the Park and after 7 years has been returned to the community.

The John Hopkins Glacier in all her glory!

My last day in the Park I headed out early (5am early) and was fortunate enough to catch a ride on the small cruise ship the Baranof Dream which was headed up-bay toward the glaciers.  I spent the day on the boat as a tourist admiring the spectacular scenery and mingling with the passengers.  I spent the following two days as the “marine-biologist in residence”, giving talks about our research in the Park, pointing out wildlife, and harkening back to my days as a naturalist in Juneau (the killer whales were certainly a highlight too).

IMG_0505After a few days on the boat, I disembarked in my hometown Juneau, Alaska, exhausted, happy, inspired, a little damp and ready to go home….

 

 

 

But c’mon this is Alaska, you never get out that easy!!! Despite my efforts to leave straight away I ended up with an extra day in Juneau, and while I won’t go into the details of how the extra 36 hours went (that’ll have to be another blog post) you can see from the photo that it turned out pretty well.  Until next time!

-Michelle Fournet

Juneau Girl at Heart
Juneau Girl at Heart

***Follow my monthly blog posts here, or check out my personal blog mfournet.wordpress.com for a comprehensive look at my research world***

Summertime

IMG_0182It’s Summertime here at ORCAA and in case you haven’t noticed that means fieldwork.  We’ve got Amanda eavesdropping on porpoise here in Oregon, Selene is tagging whales in California (yawn, who would want to do that I ask, green with envy), Niki (while not technically in the field) is reporting to us from the turquoise Mediterranean, and our honorary labmate Leanna is in full blown seal tagging development.   I am, admittedly, not spending my summer in the field this year (probably just as well… I need some time at home with my data, my dogs and my sunflowers: read about previous summer field adventures during my M.S. here) that doesn’t mean that I’m going to disappoint you.  While my 2014 summer field season may be short, it’s just the beginning for 2014.

Solo, Southeast, Social Sounds

SL_sketch1For those of you who don’t know me, I finished my M.S. here at OSU in the Oceanography department.  I received an M.S. in Marine Resource Management with a focus on conservation.  I studied humpback whale communication in Southeast Alaska (you can read my M.S. thesis here).  I moved to Juneau in 2007 after traveling through wet sunny tropical Central America.  I thought Alaska was going to be a brief pit stop on my way to tropical living.  Little did I know that 7 years later I’d still be working in the inside passage, that it would have slowly become home to me, or that I somehow would have become a cold-weather biologist (I blame it on the whales).

So, I’m headed to Glacier Bay National Park on Monday to scope out a field site for my dissertation research.  For my dissertation I’ll be investigating the use of social sounds in humpback whales (how do social sounds fit into the general repertoire of humpback whales?) and what impact noise has on social calling behavior (Lombard effect in migratory corridors has been documented in Australian humpbacks , what might vessel noise do to calling rates on a foraging ground?). For this study I’m paired up with our own seal enthusiast Leanna Matthews (see her previous post for details on the other side of seal research), who will be looking at the impact of noise on harbor seals.  We’ll be sharing a field site, and more importantly we’ll be sharing a bottom mounted hydrophone array that we intend to use to localize vocalizing animals. Noisy-Neighbors_600px Concurrent with our acoustic deployment we’ll be making visual observations with a theodolite from a nearby elevated platform.  My job next week, is to investigate potential field sites, with elevated observing options, calm waters, seals, whales, and a sleeping location as far away from the bears as possible.  Should be easy right?

The glorious part?  I’m taking the trip Northward alone- Solo. Though I will be well tended to by GLBA biologist Christine Gabriele, if the weather holds I’ll be spending a night, or two, alone at our potential field camp.  Hiking around the island, observing whales and seals, and breathing in the cold wet Alaskan air all by my lonesome.  Call me old fashioned, but I still think that seeing an area is the best way to choose a field camp.  I’ve done my research, looked at velocity charts, bathymetry charts, and topo maps… but without seeing it, listening to it, and being there I don’t feel prepared to set our precious hydrophones on the bottom on the ocean and hope for the best.  So, solo I go.

But… like I said earlier, this short trip (a week total) is just the start my 2014 field season.

South

I think secretly every biologist imagines the day that something like this happens to them:

*Phone rings*

Me: Hello?

Brilliant Super Scientist (a.k.a Holger) *on phone*: Good morning! Did I wake you?

Me: No of course not (I’ve been awake for at least 15 minutes, and you don’t know I’m in my pajamas.  Who makes work phone calls before 8am?).

Brilliant Super Scientist: Good.  Do you want to go to Antarctica?

Me: Yes. Yes I do.

This actually happened. I’m going to Antarctica! This November I will head as far South as you can get.  I’ll be joining a crew of scientists on the Korean icebreaker the R/V Araon as we head southbound from New Zealand toward the Ross Sea.  My role will be the recovery  of a U.S. hydrophone that was deployed in the area last year. The hydrophone was deployed as part of an interdisciplinary project to track oceanographic and geologic (namely glaciers) conditions in the Antarctic.  The ocean is a noisy place, and lots of features biotic and abiotic contribute to the ocean soundscape. Human activity in the Southern Ocean is limited… making it an ideal place to use acoustics to study natural phenomena like ice (and whales… lets not forget that there are lots and lots of whales in Antarctica).

Noisesources

We will be at sea for almost a month, with a stop at one of the the Korean Research Stations at the midway point.  I don’t know all the details yet, but rest assured there will be many stories to tell.  Lastly, while this isn’t technically a “solo” expedition, I will be the only one from my lab and possibly one of the few native English speakers on the boat.  I spent the evening listening to Korean phrases, luckily I have a few months left to figure out how to say hello.

In short, it’s going to be a big field year for me.  Followed up by an intensive field season in the summers of 2015 & 2016 (with interns! I love interns!)- and all it cold weather places.  If you pair my upcoming trips with my past year of Arctic data analysis (Marvin The Martian was a Bearded Seal… remember?) then I suppose my dreams of becoming a tropical bioacoustician are out… or are they?

 

Stay tuned!

 

 

***all cartoons reprinted from www.michw.com an excellent blog about science, and comics***