Last week I got to spend a week offshore, participating in the last field season (what?!) of the SOCAL-BRS project. This was a bittersweet week, to say the least. I’ve been involved with this project since before I even started grad school (see here and here for my blogs on it the last two years). It’s a long-term project (2010-2017) so I’m not sure I ever realized I wouldn’t be spending a week or two every summer, offshore of Southern California doing awesome whale tagging and behavioral response research. But, here I am, back at home, and that’s it! We still have a year of analysis left (already counting down to the analysis meeting in December!) so more science is still to come. But this week was a great time to reminisce and reflect how things have changed for myself and others on the project.
First off, there are at least 5 BRS babies. Never saw that coming! Everyone is a bit more sun damaged (despite our best efforts) and a bit more grey. I went from being a nervous, naive, some-what-lost-soul trying to find my way in the acoustics world to a full blown bioacoustician (is it ok to call myself that?). Although this research is not directly related to my PhD….it is in a system I work in regularly, with collaborators I love working with, can learn so much from, and want to keep working with, so it’s a week well spent.
That SOCAL Magic
While I had an amazing few weeks of field work for my own PhD research earlier this summer, this past week provided something a little different. It served as a reminder of the wonder, the inherent magic, that comes from working with animals out on the water.
I saw more marine wildlife in one week then I have ever seen in my life. I saw no less than 12 species (blue, fin, humpback, sperm and killer whales, common (x2 species), bottlenose, and Risso’s dolphins, California sea lions, elephant seals, and harbor seals) of marine mammals. And I not only got a glimpse of them, but got to enjoy them. From watching blue whales up close from the RHIBs, to seeing common dolphins sprint away from killer whales, to hearing bottlenose dolphins whistling while bow riding. Each day reminded me why I LOVE what I do. (Oh, and maybe I was simply less stressed because my entire dissertation didn’t depend on if I could get the stupid QUEphone to work the way I wanted it to…)
Don’t get me wrong, I love sitting in the lab. Discovering new calls, answering questions through detailed analyses, and playing with shiny new yellow AUVs. But I also just love being outside, and enjoying that offshore world. No cell service, seeing Risso’s buzzes come through in real time on the towed array, catching my limit of rockfish in the evenings, hearing the elephant seals calling on the Channel Islands.
I guess the simple point of this blog is to share that contentment, and again that wonder, that I enjoy while thinking back on the last week. Till the next adventure….
“Whistling while you work is only acceptable if you are one of the 7 dwarves. You are too tall to be a dwarf; or the Snow White”, I can imagine Holger, my advisor, saying.
In reality Holger is too wonderful to mind if I whistle while I work or not. But I actually don’t. Which a few unfortunate people that have witnessed it will unanimously agree that it is for the common good. Nevertheless, I get to work on whistles!
The animals that I work with are notorious whistlers! You might consider yourself skillful in whistling, an expert in whistle-flirting and dexterous in folding you tongue and sending loud whistles miles away to your friends on the other side of a soccer field, but that is just like whistling against the wind to dolphins. If you compare your selves to their whistling capabilities you will be embarrassingly defeated. (In every case, several analysts and Experts of Life support that comparing yourself to others can only make you unhappy.)
Dolphins and killer whales, which belong to the Delphinidae family, produce 3 types οf sounds:
1. Clicks used for echolocation that help them navigate, find food and capture it,
2. Burst pulses that are rapid rate clicks and serve similar purpose but with higher definition, and 3. Whistles
Dolphin whistles are generally of narrow bandwidth and frequency modulated sounds that commonly last for half to a few seconds, much longer than the individual clicks and they are of lower frequency. Their characteristic lower frequency allows them to propagate in longer distances and their function is believed to be primarily social.
Whistles are considered to be a product of the same mechanism that generates the clicks: air that goes through the nasal passages of the dolphin’s head. The odontocetes (toothed whales) don’t literally vocalize, since they don’t use vocal cords like we do. They use the air that enters their blowhole to make sound by canalizing it through passages and their melon (the fatty tissue that makes their forehead look rounded). This video: Echolocation and sound production mechanism can give you a good representation of it.The production of whistles seems to require larger volumes of air which makes them unsuitable for echolocation since air volume is reduced by hydrostatic pressure during diving and foraging. Instead, the dolphins are thought to use them for communicative purposes, to stay in touch with their gang in the vast oceans.
I am particularly interested in the whistles. Especially the dolphin whistles. As I described at my previous post, this past summer I collected a bunch of different dolphin species’ acoustic recordings from the Aegean Sea. These recordings will help me create a sound library for the dolphin populations that dwell the eastern Greek Seas, essentially a whistle-bank for the populations in that area.
In addition to the different dialects or accents that the dolphins populations have and I have previously mentioned, they also have names that the scientists call signature whistles. Specifically, the bottlenose dolphins are known to learn and recognize whistles that are unique for every individual in a group and these whistles are used to broadcast the identity and location of the animal that produced them. This characteristic is crucial for the contact between mother and offspring, for feeding and protection from predators. Most of the characteristic whistles are usually unchanged for all the lifetime of the dolphin. But occasionally, when the male dolphins leave their mom to experience the adult life in a group of other males their distinctive whistles actually converge and become very similar!
Besides the dolphins, more animal species seem to find names meaningful. A striking example is the one of the green-rumped parrotlet that lives in Venezuela.
This cute little green parrot is attributed a whistle name by its parents and it gradually learns it by them. In this delightful video you can see how the researcher discovers the learning ability of the parakeets in contrast to the genetic encoding of communication mechanisms in this species.
Birds have actually been the very first research target of bioacousticians. Even though they can fly away and escape the
claws of their scientific fate, it is still easier to study them than the marine mammals that slip away in the open ocean. A remarkable example of unusual bird vocalizations and intriguing to research specie is that one of the superb lyre bird of
South Australia! In this specie the male, in order to attract the girls, besides the elaborated dance and feather display, can also imitate the calls of more than 20 other bird species. This bird is so good at mimicking others that it can confuse even the birds that it is copying.
But the lyrebird is not only imitating other birds; it has evolved his skills beyond living organisms. A real master of mimicry! It is able to incorporate in its repertoire any sound that hears in the forest. Like that of a camera shutter, or a car siren, or chainsaws! Or the sound of the fridge door opening and closing (would be the case if my house was its habitat)…
But seriously, I am not making this up! Check this jaw dropping video to see for yourselves. This bird is either desperate to reproduce or the females don’t really know what they want.
At this point I will paraphrase Snow White; whistling is a lot of work!
Some people seem to have a talent in whistling. They can whistle entire songs, or the more eccentrics can whistle the whole alphabet. They use their lips, teeth and tongue to do it, their fingers in all sorts of strange formations, their palms, and a wide range of imaginative accessories. Personally, it took me several weeks at the age of 23 to learn how to whistle. Soon I was glad for my achievement as it turned out to be a remarkably useful skill when I got a dog. Loud, piercing and sharp… a whistle is hard to ignore. Even if you are a dog.
You might be surprised to discover that whistles are not used uniquely by animals for their communication. Since the Antiquity people used whistles to communicate in very long distances. Whistles can travel much longer than speech and can overcome ambient noise much more effectively. You might have noticed that often people that work in bars use them to signal among them.
In the natural environment, in locations where the landscape consists of deep valleys and steep ravines, whistled languages were common within some human communities. Before the 1940s, when the phone was not widely used yet, people replaced words with whistles to send messages that would overcome distance issues. Whistles have the ability to travel up about to two miles (3.2km), which is much further and with less effort than shouting. Initially these languages were invented and largely used by shepherds, and for long time they were a common way in agricultural communities at isolated villages to transmit news, events or emergencies.
Examples of these communities and their whistled languages still exist! The cases of the Village Antia in the Greek island of Evia, the Kuskoy Village “Bird Village” in Turkey, and the “Silbo” language at La Gomera at the Canary Islands in Spain, are the exceptional cases of alive whistled languages.
In this uncommon language, consonants are distinguished by changes in pitch over different intervals of time and the whistle is a substitute of the original language which gets compressed. The whistled language is not a code, has rather defined characteristics.
Evidently marine scientists are charismatic people with variable interests and acute curiosity . It appears that Cousteau was also interested in analyzing the characteristics of La Gomera’s whistled language!
Nowadays these languages are slowly becoming extinct. However, it is encouraging that in La Gomera at least, the Canary Islands’ government links the whistled language to the identity of the people and recognizes its value as part of the traditional culture in this area and try to preserve it. As a result, La Gomera is one of the few places in the world where children learn to whistle in schools!
Aristotle in the History of Animals wanted to describe what separates animals from people. What is that makes us different: is it the reason, the language or the laughter? Several recent researchers and philosophers suggest that it is the culture. But what do we define as culture. Is it the ability to learn, to mimic, the language? It turns out that both people and dolphins use certain sounds, in this case whistles, in form of language in order to communicate. The human community considers the human whistled language as a cultural heritage worth protecting and maintaining. Similarly, without me trying to attribute human qualities to the animals, cetaceans have social learning skills and cultural capacities that are advanced and worth maintaining as well. It is our doubtless responsibility to protect them.
During my childhood, my mom would wake me up every morning with whistling melodies. I surely despised it. Mainly the wake-up- in-the-morning part. The whistling part was also very disturbing, especially because it was such an effective mean to get me off the bed! Now I am particularly attracted by whistled melodies and I am a fool for songs that include them. So I prepared my favorite Top 10 of songs with whistling, with extra 2 Greek tracks. #1 on the list is my current wake-up-song. I love it! Not the wake-up part, I still cannot get over that…
11. Το ποδηλατο (the bicycle)- Ελένη Βιτάλη
12. Συννεφούλα (the little cloud)- Διονύσης Σαββόπουλος
**Stay tuned in our “vocalizations” through our tweets @ORCAAlab and our facebook updates at Orcaa Lab**
(A story that follows the adventures of Niki Diogou, the first person that hitchhiked at the Aegean Sea to record dolphin “voices” before somebody else does it)
Since it has been suggested that the idea of leaving the oceans (and then coming down from the trees) was not a wise thing to do, I decided to return to our distant ancestor’s water element for this summer. I spent 2 weeks of late
July and early August at the remnant of the ancient Sea Tethys, where also happens to be my motherland. Tethys Sea, prior to its closure into the Mediterranean Sea, it was the one of the 2 world oceans during the Earth’s early life, when geography class would had been so much simpler (history too) with Pangaea being a unique super-continent. Greece was covered by the
Tethys and nowadays there are fossils at the Aegean islands to prove this intimacy. The Tethys Sea was named by Eduard Suess (don’t get confused, this is a different Dr. Suess ) after the Greek goddess Tethys. She was the daughter of Uranus (Sky) and Gaia (Earth), both sister and wife of Oceanus (there are no taboos if you are a god).
After praying to all the Greek sea gods that I could remember for an opportunity to collect the data I needed for my 3rd thesis chapter, the opportunity arose. Well to be accurate, didn’t really arise itself. I did push it a bit to come up…
The history of every major marine research has passed through 3 recognizable stages, those of: Survival, Enquiry and Sophistication. Otherwise known as the How, Why and Where phases. For instance the first phase is characterized by the question “how can I get funding”. The second, by the question “why do I do this research”, and the third “where in the world is the seawater warmer and clearer”.
To answer the first question I wrote this post.
To answer the second question, I wrote my previous blog.
And for the third ultimate question about the meaning of life, universe and absolutely everything, eeeh I meant the sampling site, the ultimate answer: Greece!
Concerning the second question, I will give you a summary of my field work purpose. Though, Douglas Adams has already expressed the importance of my research:
“Man had always assumed that he was more intelligent than dolphins because he had achieved so much — the wheel, New York, wars and so on — whilst all the dolphins had ever done was muck about in the water having a good time. But conversely, the dolphins had always believed that they were far more intelligent than man — for precisely the same reasons. The last ever dolphin message was misinterpreted as a surprisingly sophisticated attempt to do a double-backwards-somersault through a hoop whilst whistling the ‘Star Spangled Banner’, but in fact the message was this: So long and thanks for all the fish”.
To avoid this sort of misunderstandings, bio-acousticians have been feverishly working on decoding the dolphins’ vocalizations.
First step towards this direction is telling the voices of different species apart.
Different species of cetaceans are known to produce different types of sounds, resulting from various factors such as morphology, genetics, ecology, sociality, and culture. For example, the calls that sperm whales, humpbacks and common dolphins produce are significantly different from each other in so many ways that are clearly distinguishable by an expert ear (and eye that inspects the spectrograms). This fact makes the lives of the bio-acousticians easier because it helps us to identify different species of whales and dolphins by just listening to them.
Things though are more complicated than this. It has been shown that within the same species, some cetaceans tend to produce different sounds when they live in different areas. So the sperm whales in the Pacific produce codas (a type of vocalization indicative of sociality and communication) that are different to the ones of the Mediterranean sperm whales. Similar is the case for pods of killer whales that use different habitats and target different prey. Likewise, different geographic populations of dolphins that belong in the same species have different call characteristics. It is like speaking dialects or simply having an accent. The differences seem to be greater when the geographical distance increases.
The geographic variations of cetacean sounds are usually divided microgeographically and macrogeographically. For instance the striped dolphins in the Mediterranean Sea produce different whistles than the ones in the Atlantic. Also the striped dolphins that live in the western Med sound differently than the ones that dwell in the eastern side. Applying the same logic, the ones that inhabit the Aegean Sea will have a different “accent” than the Ionian Sea habitants. Past studies have revealed the existence of variations in the whistle acoustic structure of a striped dolphin within the different regions of the Mediterranean Sea. However the Aegean Sea is still an acoustically pristine place. The dolphins we encounter there (common, striped, bottlenose, and risso) have not been acoustically recorded (during visual encounters) and classified. YET!
Being a communicative creature myself, I feel the need of these dolphins in the Aegean to be understood. 🙂
And the same time I will use this information to identify different dolphin species in my N. Aegean acoustic dataset. 😉
I return to the first survival question. If you have read my previous post you will probably remember my public invitation for funding to achieve the acoustic sampling in the area of my interest. In case you are not fortunate enough to study and work on the field with the charismatic megafauna, I should enlighten you into the specific requirements of cetacean research: HIGH BUDGET! Cetacean research is particularly expensive. Money for renting a boat, gas money for the boat, money for the boat crew (a captain at least is required) and money for the acoustic instrumentation.
Because the times are hard and funding appears dimly or not at all in the horizon, I had to recruit some old skills of mine to make this happen. Hitchhiking skills (contacts also help, so get your selves out to these conferences)!
I first thumbed a ride when I was doing my undergraduate at the island of Lesvos, in Greece. With my friends we would hitchhike to the university which was slightly further from downtown. Too far to walk when you are already late for the morning lecture, too close to wait for the bus that has a very irregular schedule, too expensive for taxi while being a student, and just the right distance to be given a lift! That is when my hitchhiker’s career commenced. Now that I have reached a Ph.D level and I only possess a bicycle, my hitchhiking skills have equally improved and can be utilized for science. In this case, the thumb got replaced by emails, phone calls and meetings.
Not too far from the area that I have my hydrophone deployed and I get part of my acoustic data; there is the island of Alonissos. T
here, it is founded the first Marine Protected Area in Greece that happens also to be the biggest in Europe. The marine area around Alonissos Island, together with 6 more islands, 22 islets and rocky outcrops is one of the few remaining habitats of the Mediterranean monk seal; the only seal specie in Med. In the past, the monk seal was very common all along the Mediterranean coasts.
Nowadays, it is on e of the world’s most endangered marine mammals and
half of its current population lives in Greece. For this reason in 1992, the National Marine Park of Alonissos, Northern Sporades was established and is dedicated to the protection of this rare species. There are laws a
nd regulations that limit certain anthropogenic activities that could interfere with the animals’ welfare and the population’s survival. To impose these regulations and ensure the good management of the reserve, the guards of the Marine Park patrol daily the marine protected area. And this is where my thumb comes up. The lovely people that work for the Marine Park accepted me on their daily patrols, allowed me to get on their boat and look for dolphins while they were looking for any illegal activity.
So I bought a big hat, I got my dipping hydrophone, swimming suit as my uniform and my Dolphin Quest began!
First day on the boat was mind blowing! Traveling with 35 miles/hour, stop every now and then to exotic locations, blue caves, a long break to rest the engine and the guards, have some drinks and swim in turquoise water coves. Marvelous sites that few have had the chance to visit.
And you will rightfully ask: did you find the dolphins?
No. But it was a good way to break the ice!
The following days were much more effective. I explained that for the purposes of my research we would have to go slower. As a hitchhiker I hesitated to reinforce my own rules to my hosts but soon our zodiac was going with 15 miles/hour and had 2 extra visual observers on board scanning the horizon for dorsal fins and splashes.
Still though, no dolphins in sight.
You see, the ocean is big. You just won’t believe how vastly, hugely, mind- bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to ocean. Searching for dolphins there is not an easy job. It is fun but not easy. It can take unpredictable amount of time until you get to see them. And I had only a few days before my flight back to USA…
Fortunately dolphins are curious creatures and if the boat is not too noisy they will swing by for a bit to check it out and hopefully play with its wake. Just like this. Eeeeeh, I wish.
A couple of days went by without any dolphin luck. And the thump comes out again for extra rides. I needed more time in the sea.
and Protection of the Monk seal who has been monitoring the monk seal population and promoting the establishment of a Marine Park for almost the last 30 years also operates in the same area. The last 2 years Mom has been running the Northern Aegean Dolphin Project . A team of volunteers and their lovely project leader, also called Niki, perform daily visual transect surveys to study the population and ecology of the dolphins in the Marine Park region. I
hitched a ride with them too. Success from our very first cruise! A monk
seal sighting first thing in the morning and a big group of striped dolphins that we were able to stalk for a while. Stalk and eavesdrop on their conversations! This raised my expectations.
My days passed with me jumping from the one vessel to the other exploring extensively the N. Aegean Sea. But without enough dolphin sightings. And while I was trying to compromise with the idea of having only striped dolphins’ recordings and thinking of the shift I would give to my research, disappointingly looking for any dolphins, the common dolphins appeared and gave me hope again! Fortunately, trustworthy hope. Later on the same day a mixed group of common and bottlenose dolphins was having a long dinner close to our boat. After recording them for long time, I did not resist jumping in to the water. There were far enough to not be interrupted by my presence but close enough to hear them while I had my head underwater. I was shaking with excitement. Dream comes true. Check.
My field trip ended with recordings from 3 different dolphin species, 2 monk seal encounters, countless seabirds, and 3 illegal spear-gun divers. The sea CSI in action!
The only problem was that I had to go. Too soon I think. But would there ever be a right time to leave this heavenly place?
And now I am back in Newport, my skin has still some tan left and all the Greek memories are still fresh with strong salty flavor. My suggestion is the following:
Do you want to implement research but you don’t have funds to do it? DON’T PANIC. There are ways and alternatives. Consider the hitchhiking method. It is an inexpensive way to do your sampling and it essentially means collaborating, meeting people, working together, sharing and having a common direction. I assure you, it’s the journey not the destination that matters.
My gratitude to the National Marine Park of Northern Sporades and MOm, the Northern Aegean Dolphin Project, for their hospitality and help. Definitely worth a visit and I am already craving my return!
I am going to start with a stereotype. The term stereotype is derived from the Greek words στερεός (stereos), meaning “firm, solid” and τύπος (typos), meaning “impression,” hence “solid impression”. The stereotype of Greeks relating the definition of every word to Greek origin. I know, stereotype in the stereotype, right? The Matryoshka Principle (MP) in effect!
Some people like to generalize a lot. Most of us criticize this behavior but overall it is hard to avoid it. Stereotypes result from peoples’ effort to understand the world by categorizing. As long as the stereotypes are not accompanied by prejudicial or discriminatory reactions I can, sarcastically, use them and self-stereotype.
I enjoy looking into the history, the origin of things, the etymology of words. The word itself derives from the Greek word ἐτυμολογία, etymologia, from ἔτυμον, etymon, meaning “true sense” and the suffix -logia, denoting “the study of”. MP again!
I regularly (quite always) find myself asking people, especially here in the US, where they come from. Where they originally come from, you know, not where they were born but their ancestors origin. In the case that I cannot directly ask people questions, I ask myself.
Where my studies’ subjects come from, where and when cetecean and bioacoustic rese
arch was initiated. You would (not) be surprised to discover that Cetology (from κῆτος, kētos, “whale”; and -λογία, -logia), has Greek origin, and I am not just referring to the word. It was 2364 years ago when the ancient Greek philosopher Aristotle published the History of Animals. He was only 34 when he wrote these 10 books! I don’t want to make any comparisons here, it would be inaccurate because I am also younger (!!!!), but just for reference: I struggle with just one publication.
Aristotle was the first to study and record dolphins (from Greek δελφίς (delphís), “dolphin”, related to the Greek δελφύς (delphus), “womb” and referred to as “a ‘fish’ with a womb”) and dolphin behavior. He made observations, he took notes and then he scientifically published them. He even reported his methods! Sounds like what everybody does, right? Well yes, but not 2.5 thousand years ago! It is also startling that he came up with 2 common research methods used nowadays in cetology: photo-identification and tagging. He did not have a camera or any tag equipment, but he collaborated with the fishermen and they would create artificial notches on the dorsal fins of the dolphins that were entangled alive in their fishing nets and then they were able to identify different individuals, monitor their movements and get information on their age and span of their lives.
In his writings, he correctly claimed that dolphins were mammals, he observed that they bore their live young and suckled them, breathed air and communicated by underwater sounds:
“The dolphin has a blow and lungs… it sleeps with the snout above the water and when it sleeps, snores. None produces any eggs but they give birth directly to an embryo like in the case of human and the viviparous quadrupeds. The gestation period lasts for 10 months and gives birth in the summer. The dolphins produce milk and they suckle the young which they accompany for long periods. The caring for their young is remarkable. The young grow up fast and becomes adult at the age of 10 years old. It lives for many years, even above 25 or 30… The voice of the dolphin in air is like that of the human in that they can pronounce vowels and combinations of vowels, but have difficulties with the consonants.” (Aristotle, HISTORIA ANIMALIUM, 350 BC)
It is interesting to think how much more information we have (or have not) acquired the last couple thousands of years. Especially as far as acoustics are concerned as it was not before the 1950s when new observations were made. In 1949, William E. Schevill and B. Lawrence used their hydrophones (from Greek ὕδωρ = water and φωνή = sound) into the Saguenay River of Quebec to make the first underwater recordings of the sound of cetaceans, belugas in this case, in the wild.
The use of hydrophones started at wartime too, used during WWII by
the submarines to detect underwater targets. Since it became declassified and available, it has been widely used today to study the underwater soundscapes and reveal a non-Silent World. While Jacques-Yves Cousteau’s title was a misnomer, Professor Huxley, in 1869, stated in his essay on the “Physical Basis of Life”:
“The wonderful noonday silence of a tropical forest, is, after all, due only to the dullness of our hearing; and could our ears catch the murmur of these tiny maelstroms, as they whirl in the innumerable myriads of living cells which constitute each tree, we should be stunned, as with the roar of a great city.”
making a point on the information we can get from soundscapes and the essentiality of the right equipment. Thus hydrophones become a favorite tool for cetologists and bioacousticians to record, understand and accurately study the charismatic marine-megafauna.
Being able to hear the whales and dolphins “voices”, opened a discussion whether these intelligent animals can actually talk, use their sounds to communicate with each other in a language context. I’m not sure which is the answer but I don’t see why we should give such an anthropocentric meaning to their vocalizations just to consider them intelligent and worthy of our protection and conservation efforts…
But the languages have further significance even within the human society. Anthropologists, linguists and psychologists have done research around the world and looked into many different languages to understand the importance of the use of certain languages and words in our minds performance. Results of these studies show that the words and language that we use represent and shape what and how we think. Thus who we are! Very cool research has shown that human languages shape the way we think about space, time, colors, and objects. Just like what cetaceans do using sound to navigate and locate food over long distances!
In fact, an interesting example of how words change the way we view the world is this one of Shakespeare who is known to have created a whole bunch of new words and phrases that have unarguably affected the way we sense our surroundings. “It’s all Greek to me” has been introduced by him, but I know that after reading this post this phrase has no use for you! In fact Greek is not really that hard, of medium difficulty. After 44 posts you will be proficient…
I will close by quoting Marcel Proust who said that the real voyage of discovery doesn’t consist in seeking new landscapes but having new eyes. And to paraphrase that, as far as my field of studies is concerned, the voyage of discovery consists in seeking soundscapes instead of landscapes, in listening to the deep sea, deep listening and understanding what we hear of the sounds in the oceans.
Every fourth week of the month I will be sharing with you, thoughts, ideas, everyday lessons and concerns, more related to bioacoustics than the Greek language 😉