The day after tomorrow we will arrive in icy waters on the R/V Araon. It will take another few days to break

KOPRI's icrebreaker the R/V Araon. The ship which will take us to Antarctica and through the Ross Sea.
KOPRI’s icrebreaker the R/V Araon. The ship which will take us to Antarctica and through the Ross Sea.

through the ice and arrive at Jang Bogo. The overarching mission of the KOPRI project is to investigate ice dynamics in the Ross Sea/ Terra Nova Bay region, with particular interest in the Drygalski Ice Tongue. We’ve just entered Antarctic waters (we passed the 60 degree parallel late last night), and we’re getting closer.

An interlude: there is a lot of time to burn on the ship. Most people spend time working (I’m writing my dissertation proposal, and processing data for my first manuscript) but in the evenings, after our daily science meeting, we watch movies. Last night we watched “The Day After Tomorrow”. The premise of the movie is far fetched- paleoclimatologist (Dennis Quaid) predicts a catastrophic climactic shift 100-1000 years in the future and it actually takes place instantaneously in the next 48 hours. Due to the melting of Antarctica the earth’s ocean has become desalinized, the Gulf Stream has cooled, and climate goes haywire throwing us into an instantaneous ice age.

Is it possible? To the best of my scientific knowledge- no. However, there’s an interesting line in the movie when Dennis Quaid (NOAA scientist) asserts, “We know that Antarctica has been melting, but no one knows how much fresh water it puts into the ocean, or understands anything about ice dynamics!” Evidently the entire fiasco could have been avoided if we just knew more about Antarctic ice!

Well, the movie had it way off, but they got one thing close to right. We are investigating ice dynamics in Antarctica. The NOAA-Pacific Marine Environmental Lab (PMEL) is part of an integrated effort to understand just that -ice dynamics in Antarctica. The hydrophone that I’m sent to recover for PMEL (in cooperation with KOPRI) has been listening to the sound of shifting ice. If you are unaware that ice makes noise, well you have been missing one of life’s great sound effects. While I haven’t had the chance to listen to Antarctic sea ice, you may remember from a previous blog post that I was part of a team that analyzed a year’s worth of acoustic data from the Arctic where winter sea ice abounds. The sea ice sings, wheezes, moans, cracks, and whirs. It sounds like an abiotic opera, and could easily be the character in a science fiction movie (Marvin the Martian was a Bearded seal… remember? Well, perhaps Sea Ice is his alien companion?).

But these squeaks, wheezes, and moans are more than the musical byproducts of ice- they are data. Sound can be used to infer the state of the ice, whether it is melting, moving, or quaking. In short, similar to using passive acoustic monitoring to understand ecosystem dynamics of baleen whale species, we can also use passive acoustic monitoring to understand something about polar ice dynamics. And if Dennis Quaid has taught us anything it’s that ignoring Antarctic sea ice could destroy Manhattan, this weekend (well… maybe not). More likely, understanding Antarctic ice dynamics will give us critical information linked to sea level rise and shifting climactic regimes. Not quite as sexy as destroying Manhattan- but equally as important.

Over and Out.

 

Your Antarctic Correspondent,

Michelle

 

PS- Did I mention we passed the 60 Degree Parallel! I’m at the bottom of the world!

Print Friendly, PDF & Email

Leave a reply